Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 2(5): 1214-1222, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647585

RESUMO

Bipyridinium derivatives represent the most extensively explored anolyte materials for pH-neutral aqueous organic redox flow batteries, and most derivatives feature two separate electron-transfer steps that cause a sharp decrease in cell voltage during discharge. Here, we propose a strategy to fulfill the concurrent two-electron electrochemical reaction by designing extended bipyridinium derivatives (exBPs) with a reduced energy difference between the lowest unoccupied molecular orbital of exBPs and the ß-highest occupied molecular orbital of the singly reduced form. To demonstrate, a series of exBPs are synthesized and exhibit a single peak at redox potentials of -0.75 to -0.91 V (vs standard hydrogen electrode (SHE)), as opposed to the two peaks of most bipyridinium derivatives. Cyclic voltammetry along with diffusion-ordered spectroscopy and rotating disk electrode experiments confirm that this peak corresponds to a concurrent two-electron transfer. When examined in full-flowing cells, all exBPs demonstrate one charge/discharge plateau and two-electron storage. Continuous galvanostatic cell cycling reveals the side reactions leading to capacity fading, and we disclose the underlying mechanism by identifying the degradation products. By prohibiting the dimerization/ß-elimination side reactions, we acquire a 0.5 M (1 M e-) exDMeBP/FcNCl cell with a high capacity of 22.35 Ah L-1 and a capacity retention rate of 99.95% per cycle.

2.
ChemSusChem ; 13(9): 2245-2249, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32162480

RESUMO

Viologen derivatives have been developed as negative electrolyte for neutral aqueous organic redox flow batteries (AOFBs), but the structure-performance relationship remains unclear. Here, it was investigated how the structure of viologens impacts their electrochemical behavior and thereby the battery performance, by taking hydroxylated viologens as examples. Calculations of frontier molecular orbital energy and molecular configuration promise to be an effective tool in predicting potential, kinetics, and stability, and may be broadly applicable. Specifically, a modified viologen derivative, BHOP-Vi, was proved to be the most favorable structure, enabling a concentrated 2 m battery to exhibit a power density of 110.87 mW cm-2 and an excellent capacity retention rate of 99.953 % h-1 .

3.
Angew Chem Int Ed Engl ; 59(24): 9564-9573, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32133738

RESUMO

Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer-sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...