Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 23(1): 304, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330491

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the most common chronic pulmonary disease in premature infants. Blood proteins may be early predictors of the development of this disease. METHODS: In this study, protein expression profiles (blood samples during their first week of life) and clinical data of the GSE121097 was downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) and differential protein analysis were carried out for variable dimensionality reduction and feature selection. Least absolute shrinkage and selection operator (LASSO) were conducted for BPD prediction model development. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS: The results showed that black module, magenta module and turquoise module, which included 270 proteins, were significantly correlated with the occurrence of BPD. 59 proteins overlapped between differential analysis results and above three modules. These proteins were significantly enriched in 253 GO terms and 11 KEGG signaling pathways. Then, 59 proteins were reduced to 8 proteins by LASSO analysis in the training cohort. The proteins model showed good BPD predictive performance, with an AUC of 1.00 (95% CI 0.99-1.00) and 0.96 (95% CI 0.90-1.00) in training cohort and test cohort, respectively. CONCLUSION: Our study established a reliable blood-protein based model for early prediction of BPD in premature infants. This may help elucidate pathways to target in lessening the burden or severity of BPD.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Lactente , Humanos , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/genética , Idade Gestacional , Recém-Nascido Prematuro , Proteínas Sanguíneas/genética , Curva ROC
2.
Inorg Chem ; 62(20): 7921-7931, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37150960

RESUMO

LiGa0.5In0.5Se2 is a new quaternary nonlinear optical crystal for the mid-IR application grown as a mixed crystal of the LiGaSe2-LiInSe2 solid-solution system. It is transparent in the 0.47-14 µm range and has an appropriate bandgap and a lower melting point than LiGaSe2 and LiInSe2. It is more technological about the growth process since its homogeneity range is broader in the phase diagram. In this work, we have synthesized the LiGa0.5In0.5Se2 polycrystal by the two-zone temperature method. LiGa0.5In0.5Se2 single crystals (Φ26 mm × 50 mm) were grown through the modified Bridgman method with the c-axis seed crystal which has the smallest thermal expansion coefficient of the three main axes in 293-773 K. The crystal structure was studied by X-ray diffraction and the Rietveld refinement method. Due to the low transmittance of the as-grown crystals, a systematic thermal treatment experiment was carried out. In the annealing experiment, the crystal surface is seriously enriched with selenium due to the thermal diffusion of selenium, resulting in the crystal opacity and cracking, while after vacuum quenching at 873 K, the transmittance of the LiGa0.5In0.5Se2 crystal wafer was greatly improved, the bandgap shows a large increase from 2.13 to 2.51 eV, and the quenched crystal shows strong SHG response (×1.91 LiGaSe2). The chemical states and vibration modes of surface elements for both conditions were characterized by X-ray photoelectron and Raman spectra. Density functional theory calculations were carried out to simulate the phonon spectrum and phonon density of states, which can help to study the phonon vibration modes in the lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA