Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Planta ; 259(5): 120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607398

RESUMO

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Assuntos
MicroRNAs , Saccharum , Transcriptoma/genética , Saccharum/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , MicroRNAs/genética
2.
Nat Protoc ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491145

RESUMO

As different taxa evolve, gene order often changes slowly enough that chromosomal 'blocks' with conserved gene orders (synteny) are discernible. The MCScanX toolkit ( https://github.com/wyp1125/MCScanX ) was published in 2012 as freely available software for the detection of such 'colinear blocks' and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol .

3.
Nat Plants ; 9(4): 554-571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997685

RESUMO

A diploid genome in the Saccharum complex facilitates our understanding of evolution in the highly polyploid Saccharum genus. Here we have generated a complete, gap-free genome assembly of Erianthus rufipilus, a diploid species within the Saccharum complex. The complete assembly revealed that centromere satellite homogenization was accompanied by the insertions of Gypsy retrotransposons, which drove centromere diversification. An overall low rate of gene transcription was observed in the palaeo-duplicated chromosome EruChr05 similar to other grasses, which might be regulated by methylation patterns mediated by homologous 24 nt small RNAs, and potentially mediating the functions of many nucleotide-binding site genes. Sequencing data for 211 accessions in the Saccharum complex indicated that Saccharum probably originated in the trans-Himalayan region from a diploid ancestor (x = 10) around 1.9-2.5 million years ago. Our study provides new insights into the origin and evolution of Saccharum and accelerates translational research in cereal genetics and genomics.


Assuntos
Saccharum , Saccharum/genética , Diploide , Genômica , Poaceae/genética , Poliploidia , Genoma de Planta
4.
Plant J ; 113(6): 1278-1294, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648196

RESUMO

Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Transcriptoma , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/genética , Açúcares/metabolismo
5.
Methods Mol Biol ; 2545: 429-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720827

RESUMO

Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.


Assuntos
Algoritmos , Eucariotos , Humanos , Reprodutibilidade dos Testes , Células Eucarióticas , Poliploidia
6.
Plant Commun ; 4(3): 100497, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36435969

RESUMO

Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.


Assuntos
Pistacia , Pistacia/genética , Árvores/genética , Nozes , Domesticação , Cromossomos Sexuais/genética
7.
Plant Cell ; 34(11): 4143-4172, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35961044

RESUMO

Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.


Assuntos
Brassica , Brassica/genética , Tetraploidia , Genoma de Planta/genética , Poliploidia , Diploide
8.
Nat Genet ; 54(6): 885-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654976

RESUMO

Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.


Assuntos
Saccharum , Cromossomos , Genoma de Planta/genética , Genômica , Ploidias , Saccharum/genética
9.
Nat Genet ; 54(5): 715-724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551309

RESUMO

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.


Assuntos
Carica , Carica/genética , Cromossomos de Plantas/genética , Domesticação , Melhoramento Vegetal , Cromossomos Sexuais
10.
Genome Biol ; 23(1): 75, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255946

RESUMO

BACKGROUND: Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. RESULTS: A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1-0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. CONCLUSIONS: Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach.


Assuntos
Domesticação , Spinacia oleracea , Cromossomos de Plantas/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Cromossomos Sexuais/genética , Spinacia oleracea/genética
11.
PLoS One ; 17(1): e0261748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025913

RESUMO

The frequency of G and C nucleotides in genomes varies from species to species, and sometimes even between different genes in the same genome. The monocot grasses have a bimodal distribution of genic GC content absent in dicots. We categorized plant genes from 5 dicots and 4 monocot grasses by synteny to related species and determined that syntenic genes have significantly higher GC content than non-syntenic genes at their 5`-end in the third position within codons for all 9 species. Lower GC content is correlated with gene duplication, as lack of synteny to distantly related genomes is associated with past interspersed gene duplications. Two mutation types can account for biased GC content, mutation of methylated C to T and gene conversion from A to G. Gene conversion involves non-reciprocal exchanges between homologous alleles and is not detectable when the alleles are identical or heterozygous for presence-absence variation, both likely situations for genes duplicated to new loci. Gene duplication can cause production of siRNA which can induce targeted methylation, elevating mC→T mutations. Recently duplicated plant genes are more frequently methylated and less likely to undergo gene conversion, each of these factors synergistically creating a mutational environment favoring AT nucleotides. The syntenic genes with high GC content in the grasses compose a subset that have undergone few duplications, or for which duplicate copies were purged by selection. We propose a "biased gene duplication / biased mutation" (BDBM) model that may explain the origin and trajectory of the observed link between duplication and genic GC bias. The BDBM model is supported by empirical data based on joint analyses of 9 angiosperm species with their genes categorized by duplication status, GC content, methylation levels and functional classes.


Assuntos
Genes de Plantas/genética , Poaceae/genética , Composição de Bases , Códon/genética , Epigenoma , Evolução Molecular , Conversão Gênica , Duplicação Gênica , Magnoliopsida/genética , Mutação
12.
Nat Genet ; 54(1): 73-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980919

RESUMO

Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar 'Feizixiao' was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Assuntos
Domesticação , Genoma de Planta , Litchi/genética , China , Produtos Agrícolas/genética , Evolução Molecular , Flores/genética , Haplótipos , Heterozigoto , Litchi/crescimento & desenvolvimento , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082155

RESUMO

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Assuntos
Adaptação Fisiológica/genética , Poaceae/genética , Dessecação/métodos , Genômica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Água/metabolismo
14.
Nat Genet ; 53(8): 1250-1259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267370

RESUMO

Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190 Camellia accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var. sinensis and var. assamica. It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of Camellia sinensis and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops.


Assuntos
Camellia sinensis/genética , Genoma de Planta , Haplótipos , Proteínas de Plantas/genética , Alelos , Evolução Biológica , Camellia sinensis/metabolismo , Produtos Agrícolas/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Variação Genética , Genética Populacional , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
15.
Genome Biol ; 22(1): 175, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108023

RESUMO

BACKGROUND: The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. RESULTS: Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. CONCLUSIONS: The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Zea mays/genética , Sequência de Bases , Mapeamento Cromossômico , Metilação de DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Endosperma/genética , Endosperma/metabolismo , Variação Genética , Endogamia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Zea mays/classificação , Zea mays/metabolismo
16.
Hortic Res ; 8(1): 37, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574224

RESUMO

Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1-MKK2-MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. platyphylla genome. The chromosome-level genome and gene resources of B. platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B. platyphylla.

17.
Plant Biotechnol J ; 19(3): 615-630, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073445

RESUMO

Rapeseed (Brassica napus L.) is a recent allotetraploid crop, which is well known for its high oil production. Here, we report a high-quality genome assembly of a typical semi-winter rapeseed cultivar, 'Zhongshuang11' (hereafter 'ZS11'), using a combination of single-molecule sequencing and chromosome conformation capture (Hi-C) techniques. Most of the high-confidence sequences (93.1%) were anchored to the individual chromosomes with a total of 19 centromeres identified, matching the exact chromosome count of B. napus. The repeat sequences in the A and C subgenomes in B. napus expanded significantly from 500 000 years ago, especially over the last 100 000 years. These young and recently amplified LTR-RTs showed dispersed chromosomal distribution but significantly preferentially clustered into centromeric regions. We exhaustively annotated the nucleotide-binding leucine-rich repeat (NLR) gene repertoire, yielding a total of 597 NLR genes in B. napus genome and 17.4% of which are paired (head-to-head arrangement). Based on the resequencing data of 991 B. napus accessions, we have identified 18 759 245 single nucleotide polymorphisms (SNPs) and detected a large number of genomic regions under selective sweep among the three major ecotype groups (winter, semi-winter and spring) in B. napus. We found 49 NLR genes and five NLR gene pairs colocated in selective sweep regions with different ecotypes, suggesting a rapid diversification of NLR genes during the domestication of B. napus. The high quality of our B. napus 'ZS11' genome assembly could serve as an important resource for the study of rapeseed genomics and reveal the genetic variations associated with important agronomic traits.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença , Genoma de Planta/genética , Humanos
18.
Proc Natl Acad Sci U S A ; 117(47): 29775-29785, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139555

RESUMO

Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.


Assuntos
Domesticação , Evolução Molecular , Carpa Dourada/genética , Seleção Artificial/genética , Animais , Mapeamento de Sequências Contíguas , Conjuntos de Dados como Assunto , Feminino , Proteínas de Peixes/genética , Variação Genética , Genoma/genética , Genômica , Hibridização Genética , Masculino , Modelos Animais , Filogenia , Proteínas Tirosina Quinases/genética
19.
Cell ; 183(4): 875-889.e17, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035453

RESUMO

Banyan trees are distinguished by their extraordinary aerial roots. The Ficus genus includes species that have evolved a species-specific mutualism system with wasp pollinators. We sequenced genomes of the Chinese banyan tree, F. microcarpa, and a species lacking aerial roots, F. hispida, and one wasp genome coevolving with F. microcarpa, Eupristina verticillata. Comparative analysis of the two Ficus genomes revealed dynamic karyotype variation associated with adaptive evolution. Copy number expansion of auxin-related genes from duplications and elevated auxin production are associated with aerial root development in F. microcarpa. A male-specific AGAMOUS paralog, FhAG2, was identified as a candidate gene for sex determination in F. hispida. Population genomic analyses of Ficus species revealed genomic signatures of morphological and physiological coadaptation with their pollinators involving terpenoid- and benzenoid-derived compounds. These three genomes offer insights into and genomic resources for investigating the geneses of aerial roots, monoecy and dioecy, and codiversification in a symbiotic system.


Assuntos
Evolução Biológica , Ficus/genética , Genoma de Planta , Polinização/fisiologia , Árvores/genética , Vespas/fisiologia , Animais , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Duplicações Segmentares Genômicas/genética , Cromossomos Sexuais/genética , Compostos Orgânicos Voláteis/análise
20.
BMC Plant Biol ; 20(1): 422, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928111

RESUMO

BACKGROUND: Sucrose phosphate synthase (SPS) genes play vital roles in sucrose production across various plant species. Modern sugarcane cultivar is derived from the hybridization between the high sugar content species Saccharum officinarum and the high stress tolerance species Saccharum spontaneum, generating one of the most complex genomes among all crops. The genomics of sugarcane SPS remains under-studied despite its profound impact on sugar yield. RESULTS: In the present study, 8 and 6 gene sequences for SPS were identified from the BAC libraries of S. officinarum and S. spontaneum, respectively. Phylogenetic analysis showed that SPSD was newly evolved in the lineage of Poaceae species with recently duplicated genes emerging from the SPSA clade. Molecular evolution analysis based on Ka/Ks ratios suggested that polyploidy reduced the selection pressure of SPS genes in Saccharum species. To explore the potential gene functions, the SPS expression patterns were analyzed based on RNA-seq and proteome dataset, and the sugar content was detected using metabolomics analysis. All the SPS members presented the trend of increasing expression in the sink-source transition along the developmental gradient of leaves, suggesting that the SPSs are involved in the photosynthesis in both Saccharum species as their function in dicots. Moreover, SPSs showed the higher expression in S. spontaneum and presented expressional preference between stem (SPSA) and leaf (SPSB) tissue, speculating they might be involved in the differentia of carbohydrate metabolism in these two Saccharum species, which required further verification from experiments. CONCLUSIONS: SPSA and SPSB genes presented relatively high expression and differential expression patterns between the two Saccharum species, indicating these two SPSs are important in the formation of regulatory networks and sucrose traits in the two Saccharum species. SPSB was suggested to be a major contributor to the sugar accumulation because it presented the highest expressional level and its expression positively correlated with sugar content. The recently duplicated SPSD2 presented divergent expression levels between the two Saccharum species and the relative protein content levels were highest in stem, supporting the neofunctionalization of the SPSD subfamily in Saccharum.


Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Especificidade da Espécie , Regulação da Expressão Gênica de Plantas , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...