Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597319

RESUMO

A rechargeable aqueous hybrid ion alkaline battery, using a proton and a potassium ion as charge carriers for the anode and cathode, respectively, is proposed in this study by using well-developed potassium nickel hexacyanoferrate as the cathode material and mesoporous carbon sheets as the anode material, respectively. The constructed battery operates in a concentrated KOH solution, in which the energy storage mechanism for potassium nickel hexacyanoferrate involves the redox reaction of Fe2+/Fe3+ associated with potassium ion insertion/extraction and the redox reaction of Ni(OH)2/NiOOH. The mechanism for the carbon anode is electrochemical hydrogen storage. The cathode made of potassium nickel hexacyanoferrate exhibits both an ultrahigh capacity of 232.7 mAh g-1 under 100 mA g-1 and a consistent performance of 214 mAh g-1 at 2000 mA g-1 (with a capacity retention of 92.8% after 200 cycles). The mesoporous carbon sheet anode exhibits a capacity of 87.6 mAh·g-1 at 100 mA g-1 with a good rate and cyclic performance. The full cell provides an operational voltage of 1.55 V, a capacity of 93.6 mAh g-1 at 100 mA g-1, and 82.4% capacity retention after 1000 cycles at 2000 mA g-1 along with a low self-discharge rate. The investigation and discussion about the energy storage mechanisms for both electrode materials are also provided.

2.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257036

RESUMO

PEMWE is becoming one of the most promising technologies for efficient and green hydrogen production, while the anode OER process is deeply restricted by the now commercially used iridium oxide with sluggish reaction kinetics and super high cost. Deeply exploring the essential relationship between the underlying substrate materials and the performance of PEMWE cells while simultaneously excavating new practical and convenient methods to reduce costs and increase efficiency is full of challenges. Herein, two representative kinds of iridium oxide were studied, and their performance difference in PEMWE was precisely analyzed with electrochemical techniques and physical characterization and further linked to the ionomer/catalyst compound features. A novel anode with a uniform thin ionomer coating was successfully constructed, which simultaneously optimized the ionomer/catalyst aggregates as well as electrical conductivity, resulting in significantly enhanced PEMWE performance. This rigorous qualitative analysis of the structure-performance relationship as well as effective ionomer-affinitive optimization strategies are of great significance to the development of next-generation high-performance PEM water electrolyzers.

3.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257253

RESUMO

A high phosphoric acid uptake and retention capacity are crucial for the high performance and stable operation of phosphoric acid/polybenzimidazole (PA/PBI)-based high-temperature proton exchange membranes. In this work, amine end-functionalized side-chain grafted PBI (AGPBI) with different grafting degrees are synthesized to enhance both the phosphoric acid uptake and the acid retention ability of the accordingly formed membranes. The optimized acid-base membrane exhibits a PA uptake of 374.4% and an anhydrous proton conductivity of 0.067 S cm-1 at 160 °C, with the remaining proton conductivity percentages of 91.0% after a 100 h stability test. The accordingly fabricated membrane electrode assembly deliver peak power densities of 0.407 and 0.638 W cm-2 under backpressure of 0 and 200 kPa, which are significantly higher than 0.305 and 0.477 W cm-2 for the phosphoric acid-doped unmodified PBI membrane under the same conditions.

4.
J Colloid Interface Sci ; 657: 870-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091910

RESUMO

The development of efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is impending for the advancement of water-splitting. In this study, we developed a novel electrocatalyst consisting of highly dispersed Ru nanoclusters ameliorated by cobalt single atoms and N, S co-doped reduced graphene oxide (CoSARuNC@NSG). Benefitted from the optimized electronic structure of the Ru nanoclusters induced by the adjacent single atomic Co and N, S co-doped RGO support, the electrocatalyst exhibits exceptional HER performance with overpotentials of 15 mV and 74 mV for achieving a current density of 10 mA cm-2 in alkaline and acidic water. The catalyst outperforms most noble metal-based HER electrocatalysts. Furthermore, the electrolyzer assembled with CoSARuNC@NSG and RuO2 demonstrated an overall voltage of 1.56 V at 10 mA cm-2 and an excellent operational stability for over 25 h with almost no attenuation. Theoretical calculations also deduce its high HER activity demonstrated by the smaller reaction energy barrier due to the optimized electronic structure of Ru nanoclusters. This strategy involving the regulation of metal nanoparticles activity through flexible single atom and GO support could provide valuable insights into the design of high-performance and low-cost HER catalysts.

5.
Adv Sci (Weinh) ; 10(35): e2304179, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880875

RESUMO

Developing cost-efficient bifunctional water splitting catalysts is crucial for sustainable hydrogen energy applications. Herein, ruthenium (Ru)-incorporated and phosphorus (P)-doped nickel molybdate (Ru-NiMoO(P)4 ) nanosheet array catalysts are synthesized. Due to the synergy of Ru clusters and NiMoO(P)4 by the modulated electronic structure and the rich active sites, impressively, Ru-NiMoO(P)4 exhibits superior OER (194 mV @ 50 mA cm-2 ) and HER (24 mV @ 10 mA cm-2 ) activity in alkaline media, far exceeding that of commercial Pt/C and RuO2 catalysts. Meanwhile, as bifunctional catalyst, to drive the overall water splitting at the current density of 10 mA cm-2 , Ru-NiMoO(P)4 requires only 1.45 V and maintaining stable output for 100 h. Furthermore, Ru-NiMoO(P)4 also possesses excellent capability for seawater electrolysis hydrogen production. Moreover, the successful demonstration of wind and solar hydrogen production systems provide the feasibility of the ultra-low Ru loading catalyst for large-scale hydrogen production in the future.

6.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571097

RESUMO

Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC) and named as SPM-x%, where x refers to the proportion of PPVBC to the weight of SPAEN. The chemical complexation interaction between the phosphoric acid and sulfonic acid groups in the PPVBC-SPAEN system resulted in BPEMs with reduced water uptake and enhanced mechanical properties compared to SPAEN proton exchange membranes. Furthermore, the flame retardancy of the PPVBC improved the thermal stability of the BPEMs. Despite a decrease in ion exchange capacity, the proton conductivity of the BPEMs in the through-plane direction was significantly enhanced due to the introduction of phosphoric acid groups, especially in low relative humidity (RH) environments. The measured proton conductivity of SPM-8% was 147, 98, and 28 mS cm-1 under 95%, 70%, and 50% RH, respectively, which is higher than that of the unmodified SPAEN membrane and other SPM-x% membranes. Additionally, the morphology and anisotropy of the membrane proton conductivities were analyzed and discussed. Overall, the results indicated that PPVBC doping can effectively enhance the mechanical and electrochemical properties of SPAEN membranes.

7.
Angew Chem Int Ed Engl ; 62(35): e202306325, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37401361

RESUMO

Potassium metal batteries (KMBs) are ideal choices for high energy density storage system owing to the low electrochemical potential and low cost of K. However, the practical KMB applications suffer from intrinsically active K anode, which would bring serious safety concerns due to easier generation of dendrites. Herein, to explore a facile approach to tackle this issue, we propose to regulate K plating/stripping via interfacial chemistry engineering of commercial polyolefin-based separator using multiple functional units integrated in tailored metal organic framework. As a case study, the functional units of MIL-101(Cr) offer high elastic modulus, facilitate the dissociation of potassium salt, improve the K+ transfer number and homogenize the K+ flux at the electrode/electrolyte interface. Benefiting from these favorable features, uniform and stable K plating/stripping is realized with the regulated separator. Full battery assembled with the regulated separator showed ∼19.9 % higher discharge capacity than that with glass fiber separator at 20 mA g-1 and much better cycling stability at high rates. The generality of our approach is validated with KMBs using different cathodes and electrolytes. We envision that the strategy to suppress dendrite formation by commercial separator surface engineering using tailor-designed functional units can be extended to other metal/metal ion batteries.

8.
RSC Adv ; 13(16): 11062-11068, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37063245

RESUMO

The modification of the physicochemical properties of sulfonated poly(arylene ether nitrile) (SPAEN) proton exchange membranes was demonstrated by poly(ethylene-co-vinyl alcohol) (EVOH) doping (named SPAEN-x%). By controlling the temperature during membrane preparation, the side reactions of the sulfonic acid groups to form sulfonic acid esters were effectively prevented, greatly reducing the proton conductivity of the membranes. Due to the flexible chain of EVOH, SPAEN-8% showed a relatively high elongation of 30.2%, which enhanced the aromatic polymers' flexibility. The SPAEN-2% membrane exhibited proton conductivity of 166, 55, and 9.6 mS cm-1 at 95%, 70%, and 50% relative humidity, respectively, higher than those of the other SPAEN-x% membranes and even comparable to that of Nafion 212. The water uptake, morphological study, and through-plane proton conductivity of the membranes were studied and discussed. The results suggest that EVOH doping can be used as an effective strategy to improve SPAEN-based proton exchange membranes' performance.

9.
Nat Commun ; 14(1): 2106, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055383

RESUMO

Alkene feedstocks are used to produce polymers with a market expected to reach 128.4 million metric tons by 2027. Butadiene is one of the impurities poisoning alkene polymerization catalysts and is usually removed by thermocatalytic selective hydrogenation. Excessive use of H2, poor alkene selectivity and high operating temperature (e.g. up to 350 °C) remain the most significant drawbacks of the thermocatalytic process, calling for innovative alternatives. Here we report a room-temperature (25~30 °C) electrochemistry-assisted selective hydrogenation process in a gas-fed fixed bed reactor, using water as the hydrogen source. Using a palladium membrane as the catalyst, this process offers a robust catalytic performance for selective butadiene hydrogenation, with alkene selectivity staying around 92% at a butadiene conversion above 97% for over 360 h of time on stream. The overall energy consumption of this process is 0.003 Wh/mLbutadiene, which is thousands of times lower than that of the thermocatalytic route. This study proposes an alternative electrochemical technology for industrial hydrogenation without the need for elevated temperature and hydrogen gas.

10.
Adv Mater ; 35(26): e2210894, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36959753

RESUMO

Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second-harmonic fields and the as-resulted second-harmonic generation was observed to be 100 times more intense than monolayer WS2 . This work demonstrates in-plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on-chip nonlinear optical components and nonvolatile memory devices.

11.
J Colloid Interface Sci ; 638: 184-192, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738543

RESUMO

A rational design of the structure of catalyst layer (CL) is required for proton exchange membrane fuel cells to attain outstanding performance and excellent stability. It is crucial to have a profound comprehension of the correlations existing between the properties (catalyst ink), network structures of CL and proton exchange membrane fuel cells' performance for the rational design of the structure of CL. This study deeply investigates the effects of a series of alcohol solvents on the properties and network structure of CL. The results demonstrate that the CL aggregates in higher ε solution show smaller particle sizes, and the sulfonic acid groups (∼SO3H) tend to extend more outward due to the strong dissociation. A more continuous and homogeneous ionomer distribution around Pt/C aggregates is observed in the CL, which improves the electrochemically active surface area (ECSA) and performance of the electrode. But, the electrode has a poor performance at high current density regions due to the mass transfer resistance. Based on this, a two-step solvent control strategy is proposed to maintain uniform ionomer and aggerates distribution and optimize the mass transfer for CL. The performance of the cell improves from 0.555 V to 0.615 V at 2000 mA·cm-2.


Assuntos
Prótons , Grupo Social , Membrana Celular , Eletrodos , Etanol , Polímeros , Solventes
12.
Langmuir ; 39(1): 453-460, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580659

RESUMO

Development of inorganic proton conductors that are applicable in a wide temperature range is crucial for applications such as fuel cells. Most of the reported proton conductors suffer from limited proton conductivity, especially at low temperature. In addition, the mechanism of proton conduction in the conductors is not fully understood, which limits the rational design of advanced proton conductors. In this work, we report the use of metal oxide solid acid as a promising proton conductor. WO3/ZrO2 (WZ) with different surface acidities is synthesized by controlling the content of WO3 on the surface of ZrO2. It is demonstrated that proton conductivity of WZ samples is closely related with their acidity. WZ with the strongest acidity exhibits the highest proton conduction performance at low temperatures, with a proton conductivity of 3.27 × 10-5 S cm-1 at 14 °C. The excellent performance of the WZ-type proton conductor is clarified with theoretical calculations. The results show that the enhanced water adsorption and the lowered activation barrier for breakage of the O-H bond in surface-adsorbed water are the key to the excellent proton-conductive performance of WZ. The experimental results and mechanistic insights gained in this work suggest that WZ is a promising proton conductor, and tailoring the surface acidity of metal oxides is an effective approach to regulate their proton-conductive performance.

13.
J Colloid Interface Sci ; 630(Pt A): 443-452, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265345

RESUMO

Red phosphorus/carbon (P/C) materials have been extensively studied as promising anodes for sodium-ion batteries (SIBs) owing to their high capacities and moderate working potentials. However, the low initial Coulombic efficiency (ICE) and unstable solid-electrolyte interphase (SEI) of P/C composites limit their widespread applications. In this study, we develop an effective presodiation method to compensate for the irreversible sodium loss of the S-doped P/C (P/C@S) anode and yield a thin, uniform, and NaF-rich SEI layer on the presodiated P/C@S (pNa-P/C@S) anode during cycling. Consequently, the pNa-P/C@S anode exhibits a remarkable ICE of 98.7% as well as superior cycling performance and rate capability in the half cell. When pNa-P/C@S anode is coupled with conventional Na3V2(PO4)2F3, Na3V2(PO4)3, and NaCu0.12Ni0.23Fe0.33Mn0.33 cathodes, all the full cells demonstrate desirable ICEs (>98%), high energy densities, and excellent cycling performance. The proposed method has been extended to another anode (SnO2) to demonstrate its applicability in fabricating anodes with a high ICE and stable NaF-rich SEI layer.

14.
Small ; 18(52): e2205683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344459

RESUMO

Developing high-efficiency and cost-effective bifunctional catalysts for water electrolysis is fascinating but still remains challenging. Thus, diverse strategies have been utilized to boost the activity toward oxygen/hydrogen evolution reactions (OER/HER) for water splitting. Among them, composition and structure engineering as an effective strategy has received extensive attention. Here, by means of a self-sacrificing template strategy and simultaneous regulation of the composition and structure, Fe-incorporated Ni/MoO2 heterostructural (NiFe/Fe-MoO2 ) hollow nanorod arrays are designed and constructed. Benefiting from abundant catalytic active sites, high intrinsic activity, and fast reaction kinetics, NiFe/Fe-MoO2 exhibits superior OER (η20  = 213 and 219 mV) and Pt-like HER activity (η10  = 34 and 38 mV), respectively, in 1 m KOH and alkaline seawater media. This results in attractive prospects in alkaline water and seawater electrolysis with only voltages of 1.48 and 1.51 V, and 1.69 and 1.73 V to achieve current densities of 10 and 100 mA cm-2 , respectively, superior to the Pt/C and RuO2 pair as a benchmark. Undoubtedly, this work provides a beneficial approach to the design and construction of noble-metal-free bifunctional catalysts toward efficient hydrogen production from alkaline water and seawater electrolysis.

15.
Nano Lett ; 22(18): 7563-7571, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103215

RESUMO

Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.

16.
Chem Commun (Camb) ; 58(78): 10907-10924, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112010

RESUMO

Electrocatalytic conversions of energy molecules are involved in many energy conversion processes. Improving the activity of electrocatalysts is critical for increasing the efficiency of these energy conversion processes. However, the tailored design of highly active electrocatalysts for practical applications remains challenging. In this regard, we present an overview of the general design principles for efficient electrocatalysts and application of these principles in different electrocatalytic processes. Specifically, enhancing the intrinsic activity of electrocatalysts by electronic state modulation through heteroatom doping, vacancy introduction, interfacial electronic transfer and strain engineering is introduced. In addition, improving the apparent performance of electrocatalysts by mass transport regulation, which is realized by morphological and wettability control, is also discussed. Finally, enlightenment from these studies is summarized and perspectives for the future development of electrocatalysts are provided. The important progress highlighted in this work will provide solid foundations for the tailored design of electrocatalysts toward practical applications.

17.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957050

RESUMO

Electrochemical water splitting has wide applicability in preparing high-density green energy. The Proton exchange membrane (PEM) water electrolysis system is a promising technique for the generation of hydrogen due to its high electrolytic efficiency, safety and reliability, compactness, and quick response to renewable energy sources. However, the instability of catalysts for electrochemical water splitting under operating conditions limits their practical applications. Until now, only precious metal-based materials have met the requirements for rigorous long-term stability and high catalytic activity under acid conditions. In this review, the recent progress made in this regard is presented and analyzed to clarify the role of precious metals in the promotion of the electrolytic decomposition of water. Reducing precious metal loading, enhancing catalytic activity, and improving catalytic lifetime are crucial directions for developing a new generation of PEM water electrolysis catalysts. A summary of the synthesis of high-performance catalysts based on precious metals and an analysis of the factors affecting catalytic performance were derived from a recent investigation. Finally, we present the remaining challenges and future perspectives as guidelines for practical use.

18.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957091

RESUMO

The energy crisis and environmental issues are becoming more severe due to the long-term consumption of fossil fuels. Therefore, novel energy-conversion devices with high energy density and environmental friendliness are expected to provide reliable alternatives to traditional fossil-based energy systems. However, because of the inevitable use of costly precious metals as the electrode catalysts for such devices, their popularization is seriously hindered. Transition metal nitrides (TMNs) exhibit similar surface and adsorption properties to noble metals because the atomic distance between metal atoms increases and the d-band center of metal atoms downshifts after nitrogen atoms enter the metal lattice. TMNs have become one of the best electrode materials to replace noble metal-based electrocatalysts in next-generation energy-storage and energy-conversion devices. In this review, the recent developments in the electrocatalytic application of TMNs are covered. First, we discuss the structure and activity origin of TMNs and introduce the common synthesis methods for the preparation of TMNs. Subsequently, we illustrate the applications of mono-metallic TMNs and multi-metallic TMNs in oxygen-reduction reaction, oxygen-evolution reaction, and bifunctional oxygen reduction and evolution reactions. Finally, we summarize the challenges of TMNs encountered at the present stage, and expect their future development.

19.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631832

RESUMO

A solid-state polymer electrolyte membrane is formed by blending poly(vinylidene fluoride-co-hexafluoropropylene) with the synthesized copolymer of poly(methyl methacrylate-co-1-vinyl-3-butyl-imidazolium bis(trifluoromethanesulfonyl)imide, in which lithium bis(trifluoromethane)sulfonimide molecules are applied as the source of lithium ions. The accordingly formed membrane that contains 14 wt.% of P(MMA-co-VBIm-TFSI), 56 wt.% of PVDF-HFP, and 30 wt.% of LiTFSI manifests the best electrochemical properties, achieving an ionic conductivity of 1.11 × 10-4 S·cm-1 at 30 °C and 4.26 × 10-4 S·cm-1 at 80 °C, a Li-ion transference number of 0.36, and a wide electrochemical stability window of 4.7 V (vs. Li/Li+). The thus-assembled all-solid-state lithium-ion battery of LiFePO4/SPE/Li delivers a discharge specific capacity of 148 mAh·g-1 in the initial charge-discharge cycle at 0.1 C under 60 °C. The capacity retention of the cell is 95.2% after 50 cycles at 0.1 C and the Coulombic efficiency remains close to 100% during the cycling process.

20.
J Colloid Interface Sci ; 621: 195-204, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461134

RESUMO

FeNC is the most promising material to replace the noble metal catalyst for cathodic oxygen reduction reaction in proton exchange membrane fuel cells (PEMFCs). However, the practical performance of FeNC catalyst is significantly limited by its low active site (Fe-N4) density. Herein, we propose to promote the formation of Fe-N4 active sites in FeNC catalyst by strengthening the interaction of N precursors and Fe precursors during the carbonization synthesis. In our approach, ionic liquid (IL, [EMIM][NTf2]) with high nitrogen content and good thermal stability is caged in the pores of Fe-ZIF-8 through the host-guest interactions. These interactions are critical for the preservation of Fe and N species and formation of active sites during the synthesis. The optimal catalyst developed with this approach (Fe0.05NC/10) has a high density of accessible Fe-N4 sites (1.88*1019 sites g-1). Therefore, in both acidic and alkaline media, Fe0.05NC/10 showed excellent ORR activity comparable to commercial Pt/C catalyst. Moreover, PEMFC performance with a peak power density of 300 mW cm-2 was demonstrated with Fe0.05NC/10 under H2/O2 conditions. The synthetic approach reported herein may be used for tailoring of advanced catalyst with high intrinsic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...