Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 7101-7110, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663376

RESUMO

While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.


Assuntos
Técnicas Biossensoriais , DNA , Raios Infravermelhos , MicroRNAs , MicroRNAs/análise , Humanos , Técnicas Biossensoriais/métodos , Animais , DNA/química , Camundongos , Imagem Óptica , Nanoestruturas/química
2.
Anal Chem ; 96(5): 2142-2151, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258616

RESUMO

While three-dimensional (3D) DNA walking amplifiers hold considerable promise in the construction of advanced DNA-based fluorescent biosensors for bioimaging, they encounter certain difficulties such as inadequate sensitivity, premature activation, the need for exogenous propelling forces, and low reaction rates. In this contribution, a variety of profitable solutions have been explored. First, a catalytic hairpin assembly (CHA)-achieved nonenzymatic isothermal nucleic acid amplification is integrated to enhance sensitivity. Subsequently, one DNA component is simply functionalized with a photocleavage-bond to conduct a photoresponsive manner, whereby the target recognition occurs only when the biosensor is exposed to an external ultraviolet light source, overcoming premature activation during biodelivery. Furthermore, a special self-propelling walking mechanism is implemented by reducing biothiols to MnO2 nanosheets, thereby propelling forces that are self-supplied to a Mn2+-reliant DNAzyme. By carrying the biosensing system with a DNA molecular framework to induce a unique concentration localization effect, the nucleic acid contact reaction rate is notably elevated by 6 times. Following these, an ultrasensitive in vitro detection performance with a limit of detection down to 2.89 fM is verified for a cancer-correlated microRNA biomarker (miRNA-21). Of particular importance, our multiple concepts combined 3D DNA walking amplifier that enables highly efficient fluorescence bioimaging in live cells and even bodies, exhibiting a favorable application prospect in disease analysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , DNA Catalítico/química , Compostos de Manganês , Óxidos , DNA/química , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Anal Chem ; 95(37): 14086-14093, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37665143

RESUMO

In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Microesferas , Pinças Ópticas , Poliestirenos
4.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930753

RESUMO

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Assuntos
Sulfeto de Hidrogênio , Pancreatite , Ratos , Animais , Sulfeto de Hidrogênio/química , Luminescência , Eletroquímica , Doença Aguda , Dióxido de Silício , Microesferas
5.
ACS Sens ; 7(5): 1572-1580, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35482449

RESUMO

Although great headway has been made in DNAzyme-based detection of Pb2+, its adaptability, sensitivity, and accessibility in complex media still need to be improved. For this, we introduce new ways to surmount these hurdles. First, a spherical nucleic acid (SNA) fluorescence probe (Au nanoparticles-DNAzyme probe) is utilized to specifically identify Pb2+ and its suitability for precise detection of Pb2+ in complex samples due to its excellent nuclease resistance. Second, the sensitivity of Pb2+ detection is greatly enhanced via the use of a clustered regularly interspaced short palindromic repeats-Cas12a with target recognition accuracy to amplify the fluorescent signal upon the trans cleavage of the SNA (signal probe), and the limit of detection reaches as low as 86 fM. Third, we boost the fluorescence on photonic crystal chips with a bionic periodic arrangement by employing a straightforward detection device (smartphone and portable UV lamp) to achieve on-site detection of Pb2+ with the limit of detection as low as 24 pM. Based on the abovementioned efforts, the modified Pb2+ fluorescence sensor has the advantages of higher sensitivity, better specificity, accessibility, less sample consumption, and so forth. Moreover, it can be applied to accurately detect Pb2+ in complex biological or environmental samples, which is of great promise for widespread applications.


Assuntos
DNA Catalítico , Nanopartículas Metálicas , Sistemas CRISPR-Cas , Ouro , Chumbo
6.
Anal Chim Acta ; 1195: 339455, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35090645

RESUMO

The early diagnosis and timely intervention of viral myocarditis urgently require a noninvasive detection approach. Therefore, we present a CRISPR/Cas12a-powered biosensor that integrates an exceptionally efficient upconversion luminescent resonance energy transfer (LRET) with a nature-inspired biochip to determine a golden-standard cardiac biomarker (cardiac troponin I). First, a unique sandwich-structured energy-confined upconversion nanoparticle (acting as the energy donor) is synthesized to dramatically reinforce the LRET's ability. Such a structural improvement endows a relatively high quenching efficiency (as much as 93.8%) toward the surface acceptors and enhances the working adaption in complicated biological media. Moreover, a three-dimensional photonic crystal fabricated using a self-assembly of nanospheres is employed to construct a biochip interface, under which the upconversion luminescence is prominently boosted to approximately 27-fold to achieve signal amplification. Finally, the newly developed luminescence sensing method exhibits remarkable assay performance after introducing these attempts into a dual-aptamer-regulated CRISPR/Cas12a system to transduce the target. More importantly, this biosensor can primarily be a quite useful tracer tool to allow dynamic monitoring of the entire myocardial injury process in a coxsackievirus B3 infected mouse model, paving an attractive venue for medical diagnostic techniques.


Assuntos
Técnicas Biossensoriais , Miocardite , Nanosferas , Animais , Sistemas CRISPR-Cas , Transferência Ressonante de Energia de Fluorescência , Camundongos , Miocardite/diagnóstico
7.
J Virol ; 96(5): e0181321, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020471

RESUMO

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that sphingomyelin (SM)-sequestered cholesterol, but not accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol independent, whereas the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein that activates actin nucleation, is recruited to the IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of the CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. IMPORTANCE IAV infects cells by harnessing cellular endocytic machineries. A better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in the plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results provide new insights into IAV infection and the pathway/cargo-specific involvement of the cholesterol pool(s).


Assuntos
Colesterol , Vesículas Revestidas por Clatrina , Proteínas de Ligação a Ácido Graxo , Forminas , Vírus da Influenza A , Internalização do Vírus , Actinas/metabolismo , Animais , Colesterol/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/virologia , Endocitose/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Forminas/metabolismo , Vírus da Influenza A/metabolismo , Domínios Proteicos , Esfingomielinas/metabolismo , Transferrinas/metabolismo
8.
Anal Chem ; 93(49): 16638-16645, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34855353

RESUMO

The further development of high-performance fluorescent biosensors to image intracellular microRNAs is beneficial to cancer medicine. By virtue of the need for enzymes and hairpin DNA probes, the entropy-driven reaction-assisted signal amplification strategy has shown an enormous potential to accomplish this task. Nevertheless, this good option still meets with poor biostability, low cell uptake efficiency, and unsatisfactory accuracy. On the basis of these challenges, we put forward here a battery of solving pathways. First, the straight DNA probes are anchored onto the vertexes of dual DNA tetrahedrons, and thus the enzyme resistance of the whole sensing system is observably enhanced. A metal-organic framework (ZIF-8 nanoparticle), which can be effectively dissociated into a weakly acidic environment, then is employed as an additional delivery vehicle to encapsulate such a DNA tetrahedron sustained biosensor and finally bring about a more efficient endocytosis. Last, a kind of photocleavage-linker triggered photoresponsive manner is incorporated to achieve an exceptional precise target identification, by which the biosensor can only be initiated under the irradiation of an externally mild 365 nm ultraviolet light source. In accordance with the above efforts, worthy assay performance toward microRNA-196a has given rise to this newly constructed biosensor, whose sensitivity is down to 2.7 pM and also able to distinguish single-base variation. Beyond that, the amplifier can work as a powerful imaging toolbox to accurately determine the targets in living cells, providing a promising intracellular sensing platform.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , MicroRNAs , DNA , Entropia , MicroRNAs/genética
9.
Anal Chem ; 93(37): 12514-12523, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34490773

RESUMO

Despite that the currently discovered CRISPR-Cas12a system is beneficial for improving the detection accuracy and design flexibility of luminescent biosensors, there are still challenges to extend target species and strengthen adaptability in complicated biological media. To conquer these obstacles, we present here some useful strategies. For the former, the limitation to nucleic acids assay is broken through by introducing a simple functional DNA regulation pathway to activate the unique trans-cleavage effect of this CRISPR system, under which the expected biosensors are capable of effectively transducing a protein (employing dual aptamers) and a metal ion (employing DNAzyme). For the latter, a time-gated luminescence resonance energy transfer imaging manner using a long-persistent nanophosphor as the energy donor is performed to completely eliminate the background interference and a nature-inspired biomimetic periodic chip constructed by photonic crystals is further combined to enhance the persistent luminescence. In line with the above efforts, the improved CRISPR-Cas12a luminescent biosensor not only exhibits a sound analysis performance toward the model targets (carcinoembryonic antigen and Na+) but also owns a strong anti-interference feature to actualize accurate sensing in human plasma samples, offering a new and applicative analytical tool for laboratory medicine.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Biomimética , Sistemas CRISPR-Cas/genética , DNA/genética , Humanos , Luminescência
10.
Anal Chem ; 93(36): 12447-12455, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34449219

RESUMO

Alzheimer's disease (AD), known as a progressive neurodegenerative disorder, has had a terrible impact on the health of aged people. Due to its severity, early diagnosis of AD is significant to retard the progress and provide timely treatment. Here, we report a fluorescence ratio detection of AD biomarker amyloid ß oligomers (AßOs) by combining highly doped upconversion nanoparticles-SiO2@metal-organic framework/black hole quencher (H-USM/BHQ-1) microspheres with optical tweezer (OT) microscopic imaging. Optical trapping a single microsphere not only avoids the interference of fluid viscosity but also provides a high power density laser source to efficiently stimulate upconversion luminescence (UCL) of highly doped upconversion nanoparticles (H-UCNPs). Under this condition, H-UCNPs show stronger UCL and greater power-dependent properties compared to low-doped ones. Moreover, the closely packed quenching molecules BHQ-1 on a metal-organic framework (ZIF-8) exhibit excellent quenching efficiency for upconversion 525 and 540 nm emission. Also, the luminescent resonance energy transfer efficiency reaches 89.58%. When different concentrations of AßOs are present, the UCL540 recovers due to the decomposition of ZIF-8 and the release of BHQ-1. Using 540 and 654 nm emission ratio of highly doped UCNPs as reporters, the limit of detection reaches 28.4 pM for the quantitative determination of AßOs. Besides, this strategy is able to selectively quantify the AßO concentration. Therefore, we demonstrated the combination of optical trapping and highly doped UCNPs which is applied for the detection of AßOs with high sensitivity and specificity.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Idoso , Peptídeos beta-Amiloides , Humanos , Microesferas , Dióxido de Silício
11.
ACS Appl Mater Interfaces ; 13(27): 31485-31494, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34184527

RESUMO

Owing to their favorable design flexibility and eminent signal amplification ability, DNA nanomachine-supported biosensors have provided an attractive avenue for intracellular fluorescence imaging, especially for DNA walkers. However, this promising option not only suffers from poor controllability but also needs to be supplied with additional driving forces on account of the frequent employment of metal ion-dependent DNAzymes. Aiming at overcoming these obstacles, we introduce some fruitful solutions. On one hand, innovative light-activated walking behavior induced by a photocleavage mode is established on the surfaces of gold nanoparticles, and such a photoselective sensing system can be perfectly prevented from pre-activating during the intracellular delivery process and made to achieve target identification only under irradiation using a moderate ultraviolet light source. On the other hand, this light-switchable sensing frame is encapsulated within a dissociable metal-organic framework (ZIF-8) to facilitate endocytosis and ensure sufficient internal cofactors (Zn2+) to realize a self-driven pattern in the acidic environment of the cell lysosome. Based on the abovementioned efforts, the newly constructed autonomous three-dimensional DNA walkers present satisfactory sensitivity (a limit of detection of down to 19.4 pM) and specificity (even distinguishing single-base changes) toward a model biomarker (microRNA-21). More importantly, the sensing method allows determination of the variations in targets in living cancer cells with exceptional precision and efficiency, offering a powerful assay platform for intracellular imaging.


Assuntos
DNA/química , DNA/metabolismo , Luz , MicroRNAs/metabolismo , Nanoestruturas/química , Nanotecnologia/métodos , Imagem Óptica/métodos , Sobrevivência Celular , Células HeLa , Humanos , Células MCF-7 , Estruturas Metalorgânicas/química
12.
Biosens Bioelectron ; 190: 113445, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153827

RESUMO

Benefiting from the outstanding signal amplification effect and the admirable construction flexibility, the currently proposed DNA motors (particularly DNA walkers) based biosensing concepts have provided a forceful fluorescence imaging tool for intracellular detection. Even so, this promising sensing means is not only subject to poor controllability and prone to produce false signals but also requires exogenous powering forces owing to the common employment of DNAzyme. In response to these challenges, we are herein motivated to present some meaningful solving strategies. For one thing, the surfaces of gold nanoparticles are conducted with a photo-gated walking behavior by introducing a photocleave mode, under which the light-switchable DNA walkers are capable of being selectively activated via an external ultraviolet source to faultlessly prevent the sensing frame from being pre-initiated during cellular uptake and intracellular delivery. For another, the intracellular biothiols are consumed by MnO2 nanosheets to effectively avoid the competitions to Au-S bonds to eliminate potential false outputs and also self-supply sufficient cofactors (Mn2+) to actualize a self-powered operation pattern as well as facilitate the endocytosis process. Following these breakthroughs, a favorable analysis performance towards a model tumor biomarker (survivin mRNA) is endowed with the newly raised biosensor, whose sensitivity is low to pM level with a sound specificity for identifying single base mismatching. Moreover, the significantly improved autonomous three-dimensional DNA walkers can be used to determine and dynamically trace the targets in live cancer cells with an exceptional precise and efficient manner, commendably impelling the sensing ability of DNA motors in biological specimens.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , DNA/genética , Ouro , Compostos de Manganês , Óxidos , RNA Mensageiro/genética , Survivina/genética
13.
Anal Chem ; 93(12): 5211-5217, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33728900

RESUMO

Microtubules (MTs) are the main component of cytoskeletons, providing long tracks for cargo trafficking across the cytoplasm. In the past years, transport along MTs was frequently reported to be rapid directed motions with speeds of several micrometers per second, but is that all the truth? Using single-particle tracking, we roundly and precisely analyzed the dynamic behaviors of three kinds of cargoes transported along MTs in two types of cells. It was found that during the transport processes, the directed motions of the cargoes were frequently interrupted by nondirected motions which greatly reduced the translocation rate toward the nucleus. What is more, in addition to the widely reported rapid directed motions, a type of directed motions with most speeds below 0.5 µm/s occurred more frequently. On the whole, these slow directed motions took longer than the rapid directed motions and resulted in displacements same as those of the rapid ones. To sum up, while travelling along MTs toward the cell interior, endocytosed cargoes moved alternately in rapid-directed, slow-directed and nondirected modes. In this process, the rapid- and the slow-directed motions contributed almost equally to the cargoes' translocation. This work provides original insights into the transport on MTs, facilitating a more comprehensive understanding of intracellular trafficking.


Assuntos
Núcleo Celular , Microtúbulos , Transporte Biológico , Movimento Celular , Núcleo Celular/metabolismo , Citoplasma , Microtúbulos/metabolismo
14.
ACS Nano ; 15(5): 8142-8154, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33428399

RESUMO

Taking advantage of outstanding precision in target recognition and trans-cleavage ability, the recently discovered CRISPR/Cas12a system provides an alternative opportunity for designing fluorescence biosensors. To fully exploit the analytical potential, we introduce here some meaningful concepts. First, the collateral cleavage of CRISPR/Cas12a is efficiently activated in a functional DNA regulation manner and the bottleneck which largely applicable to nucleic acids detection is broken. After selection of a representative aptamer and DNAzyme as the transduction pathways, the sensing coverage is extended to a small organic compound (ATP) and a metal ion (Na+). The assay sensitivity is significantly improved by utilizing a bead-supported enrichment strategy wherein emerging holographic optical tweezers are used to enhance imaging stability and simultaneously achieve multiflux analysis. Last, a sandwich-structured energy-concentrating upconversion nanoparticle triggered boosting luminescent resonance energy transfer mode is comined to face with complicated biological samples by skillfully confining the emitters into a very limited inner shell. Following the above attempts, the developed CRISPR/Cas12a biosensors not only present an ultrasensitive assay behavior toward these model non-nucleic acid analytes but also can serve as a formidable toolbox for determining real samples including single cell lysates and human plasma, proving a good practical application capacity.


Assuntos
Técnicas Biossensoriais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , DNA , Humanos , Pinças Ópticas
15.
ACS Appl Bio Mater ; 4(3): 2044-2051, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014330

RESUMO

Influenza A virus (IAV) is internalized into its host cells by endocytosis, which involves many cellular proteins and molecules. In this study, we focus on the function of calcium ion (Ca2+) in IAV endocytosis. We have found that IAV infection is accompanied by the increase in concentration of cytosolic Ca2+, which is mainly attributed to the influx of extracellular Ca2+. When Ca2+ influx is abolished, IAV internalization will be markedly suppressed, but the virus attachment to its host cells will be unaffected. Extracellular Ca2+ influx is essential to the clathrin-mediated endocytosis (CME) of IAVs but dispensable to the clathrin-independent endocytosis of the virus and is dispensable to the CME of transferrin or low-density lipoprotein as a control. Ca2+ influx might participate in the dynamin-promoted membrane fission in the CME of IAVs. Our study highlights that IAVs enter host cells via extracellular Ca2+ influx-involved clathrin- and dynamin-dependent endocytosis, which will facilitate better understanding of IAV infection and development of anti-influenza drugs.


Assuntos
Materiais Biocompatíveis/química , Cálcio/metabolismo , Clatrina/metabolismo , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Animais , Cães , Endocitose , Células Madin Darby de Rim Canino/virologia , Teste de Materiais , Tamanho da Partícula
16.
Biosens Bioelectron ; 169: 112650, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987327

RESUMO

Apart from gene editing capacity, the newly discovered CRISPR/Cas systems offer an exciting option for biosensing field because of their excellent target recognition accuracy. However, the currently constructed sensors are not only limited to nucleic acid analysis but also suffer from poor adaptability in complex samples and unsatisfying sensitivity. We herein introduce some advanced concepts to break through these bottlenecks. First, the sensing targets are extended by skillfully designing a functional DNA such as aptamer (for protein) and DNAzyme (for metal ion) to regulate the transduction of non-nucleic acid species and further activate the trans cleavage of CRISPR/Cas12a. Second, a boosting upconversion luminescent resonance energy is triggered by using a peculiar energy-confining notion, whereby the luminescence domain is intensively restricted in a very narrow space (~2.44 nm) and up to 92.9% of the green emission can be quenched by the approaching BHQ-1 modified reporters. Third, a bio-inspired periodic arrangement biomimetic chip (photonic crystal) is employed to selectively reflect the upconversion luminescence to achieve noteworthy signal enhancement (~35-fold). By utilizing very simple detection devices (a 980 nm portable laser and a smartphone), the CRISPR/Cas12a biosensor shows commendable sensitivity and specificity toward model targets (ATP and Na+, limits of detection are ~ 18 nM and ~0.37 µM, respectively). More importantly, the analysis of real complex samples demonstrate that the as-proposed platform can work as a powerful toolbox for monitoring the ATP fluctuation in single cell and point-of-care testing Na+ in human plasma, enabling a broad application prospect.


Assuntos
Técnicas Biossensoriais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biomimética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Humanos
17.
mBio ; 11(3)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430465

RESUMO

Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.


Assuntos
Vírus da Encefalite Japonesa (Subgrupo)/química , Lipídeos de Membrana/química , Pontos Quânticos , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Animais , Biotina/metabolismo , Chlorocebus aethiops , Cricetinae , Cães , Células Madin Darby de Rim Canino , Microscopia de Fluorescência/métodos , Estreptavidina/metabolismo , Células Vero
18.
Chem Commun (Camb) ; 56(51): 6997-7000, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32441293

RESUMO

We incorporate three conceptual components including luminescence-concentrating upconversion nanoparticles, optical tweezers, and DNA walkers into bead carriers to establish a new imaging analysis.


Assuntos
DNA/química , Luminescência , MicroRNAs/análise , Nanopartículas/química , Pinças Ópticas , Linhagem Celular , Humanos , Tamanho da Partícula , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 59(28): 11240-11244, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246736

RESUMO

Comprehensive phenotypic profiling of heterogeneous circulating tumor cells (CTCs) at single-cell resolution has great importance for cancer management. Herein, a novel spectrally combined encoding (SCE) strategy was proposed for multiplex biomarker profiling of single CTCs using a multifunctional nanosphere-mediated microfluidic platform. Different cellular biomarkers uniquely labeled by multifunctional nanosphere barcodes, possessing identical magnetic tags and distinct optical signatures, enabled isolation of heterogeneous CTCs with over 91.6 % efficiency and in situ SCE of phenotypes. By further trapping individual CTCs in ordered microstructures on chip, composite single-cell spectral signatures were conveniently and efficiently obtained, allowing reliable spectral-readout for multiplex biomarker profiling. This SCE strategy exhibited great potential in multiplex profiling of heterogeneous CTC phenotypes, offering new avenues for cancer study and precise medicine.


Assuntos
Microfluídica , Nanosferas , Células Neoplásicas Circulantes , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Código de Barras de DNA Taxonômico , Humanos , Microscopia de Fluorescência , Estudo de Prova de Conceito
20.
Anal Chem ; 92(7): 5258-5266, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156113

RESUMO

To enhance signal acquisition stability and diminish background interference for conventional flow bead-based fluorescence detection methods, we demonstrate here an exceptional microfluidic chip assisted platform by integrating near-infrared optical tweezers with upconversion luminescence encoding. For the former, a single 980 nm laser is employed to perform optical trapping and concurrently excite upconversion luminescence, avoiding the fluctuation of the signals and the complexity of the apparatus. By virtue of the favorable optical properties of upconversion nanoparticles (UCNPs), the latter is carried out by employing two-color UCNPs (Er-UCNPs and Tm-UCNPs) with negligible spectral overlaps. With the assistance of the double key techniques, we fabricated complex microbeads referred to a UCNPs-miRNAs-microbead sandwich construct by a one-step nucleic acid hybridization process and then obtained uniform terrace peaks for the automatic and simultaneous quantitative determination of miRNA-205 and miRNA-21 sequences with a detection limit of pM level on the basis of a special home-built flow bead platform. Furthermore, the technique was successfully applied for analyzing complex biological samples such as cell lysates and human tissue lysates, holding certain potential for disease diagnosis. In addition, it is expected that the flow platform can be utilized to investigate many other biomolecules of single cells and to allow analysis of particle heterogeneity in biological fluid by means of optical tweezers.


Assuntos
Luminescência , MicroRNAs/análise , Pinças Ópticas , Células Cultivadas , Humanos , Raios Infravermelhos , Lasers , Microesferas , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...