Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004297

RESUMO

Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models.

2.
Sheng Wu Gong Cheng Xue Bao ; 30(3): 492-503, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25007585

RESUMO

We established methods to isolate human amniotic fluid-derived progenitor cells (hAFPCs), and analyze the ability of hAFPCs to secrete human coagulation factor IX (hFIX) after gene modification. The hAFPCs were manually isolated by selection for attachment to gelatin coated culture dish. hFIX cDNA was transfected into hAPFCs by using a lentiviral vector. The hFIX protein concentration and activity produced from hAFPCs were determined by enzyme-linked immunosorbent assay (ELISA) and clotting assay. The isolated spindle-shaped cells showed fibroblastoid morphology after three culture passages. The doubling time in culture was 39.05 hours. Immunocytochemistry staining of the fibroblast-like cells from amniotic fluid detected expression of stem cell markers such as SSEA4 and TRA1-60. Quantitative PCR analysis demonstrated the expression of NANOG, OCT4 and SOX2 mRNAs. Transfected hAFPCs could produce and secrete hFIX into the culture medium. The observed concentration of secreted hFIX was 20.37% +/- 2.77% two days after passage, with clotting activity of 16.42% +/- 1.78%. The amount of hFIX:Ag reached a plateau of 50.35% +/- 5.42%, with clotting activity 45.34% +/- 4.67%. In conclusion, this study established method to isolate and culture amniotic fluid progenitor cells. Transfected hAFPCs can produce hFIX at stable levels in vitro, and clotting activity increases with higher hFIX concentration. Genetically engineered hAFPC are a potential method for prenatal treatment of hemophilia B.


Assuntos
Líquido Amniótico/citologia , Separação Celular/métodos , Fator IX/biossíntese , Engenharia Genética , Células-Tronco/citologia , Coagulação Sanguínea , Técnicas de Cultura de Células , DNA Complementar , Vetores Genéticos , Humanos , Células-Tronco/metabolismo , Transfecção
3.
Int J Mol Med ; 32(1): 25-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23652807

RESUMO

Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Transcriptoma , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
4.
Cell Biol Int ; 37(5): 420-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23504762

RESUMO

Human amniotic fluid derived progenitor cells (hAFPCs) may be multipotent and can be considered a potential tool in the field of cell therapy for haemophilia B. Their capacity to express human coagulation factor IX (hFIX) after transduction and their fate after in utero transplantation is unknown. hAFPCs isolated from second trimester pregnancies were assessed for their phenotypic markers, multilineage capacity, and expression of hFIX after transduction. Their engraftment potential was analysed in a mouse model after in utero transplantation at embryonic day 12.5. Immunohistochemistry, fluorescence in situ, ELISA and PCR were used to assess post-transplant chimeras. hAFPCs expressed several pluripotent markers, including NANOG, SOX2, SSEA4 and TRA-1-60, and could differentiate into adipocytes and osteocytes. In vitro, after transduction with hFIX and EGFP cDNAs, constitutive hFIX protein expression and clotting activity were found. Engraftment was achieved in various foetal tissues after in utero transplantation. Safe engraftment without oncogenesis was confirmed, with low donor cell levels, but persistent engraftment, into different organs (liver, heart and lung) through to 12 weeks of age. Transgenic expression of circulating hFIX was detected in recipient mice for up to 12 weeks. hAFPCs can be engrafted long-term in immunocompetent mice after in utero transplantation. Thus, cell transplantation approaches using genetically engineered hAFPCs may prove valuable for the prenatal treatment for haemophilia B.


Assuntos
Líquido Amniótico/citologia , Fator IX/metabolismo , Células-Tronco/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Fator IX/genética , Feminino , Feto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemofilia B/terapia , Humanos , Hospedeiro Imunocomprometido , Camundongos , Gravidez , Segundo Trimestre da Gravidez , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...