Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3612-3627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491812

RESUMO

Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Proteína Fosfatase 2 , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína Fosfatase 2/metabolismo , Produtos Biológicos/farmacologia , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Animais
2.
Biomedicines ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398060

RESUMO

This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.

3.
Environ Toxicol ; 39(1): 299-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705323

RESUMO

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.


Assuntos
Apoptose , Neoplasias Bucais , Humanos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Bucais/metabolismo
4.
Environ Toxicol ; 39(3): 1221-1234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921086

RESUMO

Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells. DEMU (0, 2, 3, and 4 µg/mL) at 48 h treatments inhibited the proliferation of oral cancer cells (the cell viability (%) for Ca9-22 cells was 100.0 ± 2.2, 75.4 ± 5.6, 26.0 ± 3.8, and 15.4 ± 1.4, and for CAL 27 cells was 100.0 ± 9.4, 77.2 ± 5.9, 57.4 ± 10.7, and 27.1 ± 1.1) more strongly than that of normal cells (the cell viability (%) for S-G cells was 100.0 ± 6.6, 91.0 ± 4.6, 95.0 ± 2.6, and 95.8 ± 5.5), although this was blocked by the antioxidant N-acetylcysteine. The presence of oxidative stress was evidenced by the increase of reactive oxygen species and mitochondrial superoxide and the downregulation of the cellular antioxidant glutathione in oral cancer cells, but these changes were minor in normal cells. DEMU also caused greater induction of the subG1 phase, extrinsic and intrinsic apoptosis (annexin V and caspases 3, 8, and 9), and DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer than in normal cells. N-acetylcysteine attenuated all these DEMU-induced changes. Together, these data demonstrate the preferential antiproliferative function of DEMU in oral cancer cells, with the preferential induction of oxidative stress, apoptosis, and DNA damage in these cancer cells, and low cytotoxicity toward normal cells.


Assuntos
Alcaloides , Neoplasias Bucais , Humanos , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Neoplasias Bucais/tratamento farmacológico , Apoptose , Proliferação de Células , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Indóis/farmacologia , Linhagem Celular Tumoral , Dano ao DNA
5.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569824

RESUMO

Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.


Assuntos
Exossomos , MicroRNAs , MicroRNAs/genética , Exossomos/genética
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175458

RESUMO

Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Dano ao DNA , Proliferação de Células , Linhagem Celular Tumoral , Estresse Oxidativo , Apoptose , Acetilcisteína/farmacologia
7.
Cancers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190145

RESUMO

Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.

8.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240198

RESUMO

Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.


Assuntos
Neoplasias da Mama , Endorribonucleases , Humanos , Feminino , Endorribonucleases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982818

RESUMO

Ginger-derived compounds are abundant sources of anticancer natural products. However, the anticancer effects of (E)-3-hydroxy-1-(4'-hydroxy-3',5'-dimethoxyphenyl)-tetradecan-6-en-5-one (3HDT) have not been examined. This study aims to assess the antiproliferation ability of 3HDT on triple-negative breast cancer (TNBC) cells. 3HDT showed dose-responsive antiproliferation for TNBC cells (HCC1937 and Hs578T). Moreover, 3HDT exerted higher antiproliferation and apoptosis on TNBC cells than on normal cells (H184B5F5/M10). By examining reactive oxygen species, mitochondrial membrane potential, and glutathione, we found that 3HDT provided higher inductions for oxidative stress in TNBC cells compared with normal cells. Antiproliferation, oxidative stress, antioxidant signaling, and apoptosis were recovered by N-acetylcysteine, indicating that 3HDT preferentially induced oxidative-stress-mediated antiproliferation in TNBC cells but not in normal cells. Moreover, by examining γH2A histone family member X (γH2AX) and 8-hydroxy-2-deoxyguanosine, we found that 3HDT provided higher inductions for DNA damage, which was also reverted by N-acetylcysteine. In conclusion, 3HDT is an effective anticancer drug with preferential antiproliferation, oxidative stress, apoptosis, and DNA damage effects on TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Zingiber officinale , Humanos , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Dano ao DNA
10.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835100

RESUMO

Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Humanos , Produtos Biológicos/farmacologia , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
11.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835397

RESUMO

Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Bucais , Estresse Oxidativo , Humanos , Apoptose , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36612314

RESUMO

Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.

13.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559026

RESUMO

The anticancer effects and mechanisms of marine sponge Aaptos suberitoides were rarely assessed, especially for methanol extract of A. suberitoides (MEAS) to breast cancer cells. This study evaluated the differential suppression effects of proliferation by MEAS between breast cancer and normal cells. MEAS demonstrated more antiproliferation impact on breast cancer cells than normal cells, indicating oxidative stress-dependent preferential antiproliferation effects on breast cancer cells but not for normal cells. Several oxidative stress-associated responses were highly induced by MEAS in breast cancer cells but not normal cells, including the generations of cellular and mitochondrial oxidative stress as well as the depletion of mitochondrial membrane potential. MEAS downregulated cellular antioxidants such as glutathione, partly contributing to the upregulation of oxidative stress in breast cancer cells. This preferential oxidative stress generation is accompanied by more DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in breast cancer cells than in normal cells. N-acetylcysteine reverted these MEAS-triggered responses. In conclusion, MEAS is a potential natural product for treating breast cancer cells with the characteristics of preferential antiproliferation function without cytotoxicity to normal cells in vitro.

14.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421413

RESUMO

Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.

15.
Ann Plast Surg ; 89(6): 626-630, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416688

RESUMO

BACKGROUND: Keloid is a benign tumor with high recurrence rate; accordingly, complete surgical excision with adjuvant radiotherapy is one of the most effective treatments. This study reviewed outcomes of keloid patients receiving surgery and adjuvant radiotherapy in Kaohsiung Medical University Hospital. MATERIALS AND METHODS: All patients received radiation dose with 15 Gy, with their first radiotherapy within 24 hours after surgical excision. The end points were recurrence rate and local recurrence-free interval (LRFI), defined clinically as palpable gross tumor over the treatment site and duration from the last day of radiotherapy to disease recurrence. RESULTS: From May 2017 to July 2020, 32 patients with 40 keloid lesions were included. The mean age for these patients was 37.6 years, and the median follow-up time was 15.3 months. The overall recurrence rate was 52.5%, and the median LRFI was 9.7 months. Recurrence rates for males and females were 46.7% and 56% ( P = 0.567), respectively; for head and ear, chest, shoulder and upper extremities, and abdomen and back were 12.5%, 61.5%, 63.6%, and 62.5% ( P = 0.093); for lesions over 20 cm 2 and below 20 cm 2 were 62.5% and 50% ( P = 0.527); and for megavoltage electron beam and kilovoltage photon beam were 56.7% and 40% ( P = 0.361), respectively. Patients were further classified into 2 groups by lesion sites, which showed lower recurrence rate ( P = 0.011) and longer LRFI ( P = 0.028) with lesions over the head and ear than other sites. CONCLUSIONS: We found that lesion site might be a prognostic factor for keloid recurrence. Adjuvant radiation dose escalation for high-recurrence risk areas (other than the head and ear) might be required.


Assuntos
Queloide , Adulto , Feminino , Humanos , Masculino , Queloide/radioterapia , Queloide/cirurgia , Queloide/patologia , Prognóstico , Radioterapia Adjuvante , Recidiva
16.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230902

RESUMO

AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.


Assuntos
Neoplasias , RNA Longo não Codificante , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1
17.
Antioxidants (Basel) ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36290705

RESUMO

The purpose of this study aimed to assess the antiproliferation effects of methanol extract of T. swinhoei (METS) and explore the detailed responses of oral cancer cells compared to normal cells. METS effectively inhibits the cell proliferation of oral cancer cells but does not affect normal cell viability, exhibiting preferential antiproliferation function. METS exerted more subG1 accumulation, apoptosis induction, cellular and mitochondrial oxidative stress, and DNA damage than normal cells, reverted by oxidative stress inhibitor N-acetylcysteine. This METS-caused oxidative stress was validated to attribute to the downregulation of glutathione. METS activated both extrinsic and intrinsic caspases. DNA double-strand breaks (γH2AX) and oxidative DNA damage (8-hydroxy-2-deoxyguanosine) were stimulated by METS. Therefore, for the first time, this investigation shed light on exploring the functions and responses of preferential antiproliferation of METS in oral cancer cells.

18.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290795

RESUMO

A novel nitrated [6,6,6]tricycles-derived compound containing nitro, methoxy, and ispropyloxy groups, namely SK1, was developed in our previous report. However, the anticancer effects of SK1 were not assessed. Moreover, SK1 contains two nitro groups (NO2) and one nitrogen-oxygen (N-O) bond exhibiting the potential for oxidative stress generation, but this was not examined. The present study aimed to evaluate the antiproliferation effects and oxidative stress and its associated responses between oral cancer and normal cells. Based on the MTS assay, SK1 demonstrated more antiproliferation ability in oral cancer cells than normal cells, reversed by N-acetylcysteine. This suggests that SK1 causes antiproliferation effects preferentially in an oxidative stress-dependent manner. The oxidative stress-associated responses were further validated, showing higher ROS/MitoSOX burst, MMP, and GSH depletion in oral cancer cells than in normal cells. Meanwhile, SK1 caused oxidative stress-causing apoptosis, such as caspases 3/8/9, and DNA damages, such as γH2AX and 8-OHdG, to a greater extent in oral cancer cells than in normal cells. Siilar to cell viability, these oxidative stress responses were partially diminished by NAC, indicating that SK1 promoted oxidative stress-dependent responses. In conclusion, SK1 exerts oxidative stress, apoptosis, and DNA damage to a greater extent to oral cancer cells than in normal cells.

19.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139871

RESUMO

Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S-G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.

20.
Antioxidants (Basel) ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139887

RESUMO

Data regarding the effects of crude extract of Commelina plants in oral cancer treatment are scarce. This present study aimed to assess the proliferation-modulating effects of the Commelina sp. (MECO) methanol extract on oral cancer cells in culture, Ca9-22, and CAL 27. MECO suppressed viability to a greater extent in oral cancer cells than in normal cells. MECO also induced more annexin V, apoptosis, and caspase signaling for caspases 3/8/9 in oral cancer cells. The preferential antiproliferation and apoptosis were associated with cellular and mitochondrial oxidative stress in oral cancer cells. Moreover, MECO also preferentially induced DNA damage in oral cancer cells by elevating γH2AX and 8-hydroxyl-2'-deoxyguanosine. The oxidative stress scavengers N-acetylcysteine or MitoTEMPO reverted these preferential antiproliferation mechanisms. It can be concluded that MECO is a natural product with preferential antiproliferation effects and exhibits an oxidative stress-associated mechanism in oral cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...