Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 334: 122234, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931744

RESUMO

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Assuntos
Estresse Oxidativo , Traumatismo por Reperfusão , Ratos , Animais , Calcimicina/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Bactérias , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...