Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35010073

RESUMO

Graphene has been widely used in photodetectors; however its photoresponsivity is limited due to the intrinsic low absorption of graphene. To enhance the graphene absorption, a waveguide structure with an extended interaction length and plasmonic resonance with light field enhancement are often employed. However, the operation bandwidth is narrowed when this happens. Here, a novel graphene-based all-fiber photodetector (AFPD) was demonstrated with ultrahigh responsivity over a full near-infrared band. The AFPD benefits from the gold-enhanced absorption when an interdigitated Au electrode is fabricated onto a Graphene-PMMA film covered over a side-polished fiber (SFP). Interestingly, the AFPD shows a photoresponsivity of >1 × 104 A/W and an external quantum efficiency of >4.6 × 106% over a broadband region of 980-1620 nm. The proposed device provides a simple, low-cost, efficient, and robust way to detect optical fiber signals with intriguing capabilities in terms of distributed photodetection and on-line power monitoring, which is highly desirable for a fiber-optic communication system.

2.
Biosens Bioelectron ; 170: 112547, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010707

RESUMO

A cost-effective and label-free optical fiber sensor was proposed to detect phospholipase A2 (PLA2) in nM concentration. The sensor is made of an alkoxysilane-modified side-polished fiber (SPF) coated with 4'-pentyl-4-cyanobiphenyl (5CB) and self-assembled phospholipid (L-DLPC). It is found that the relative transmission optical power (RTOP) of the fiber sensor decreases due to the 5CB realignment and redistribution induced by the PLA2 hydrolysis of L-DLPC. The response-time at 5 dB RTOP variation exhibits an exponential dependence on PLA2 concentration, allowing us to detect the PLA2 by the 5 dB-response time. This detection method can reduce the detection time. Compare with the traditional copper-grid sensor, the proposed novel fiber sensor has a lower detection limit (<1 nM). Furthermore, the sensor has good repeat-ability and specificity.The sensor's RTOP variation for PLA2 detection at 1 nM is ~21 times higher than that for five other enzymes (trypsin, amylase, thrombin, glucose oxidase, pepsin) at 1000 nM and lipase at 50 nM. This confirms the sensor's excellent PLA2 specificity. The fiber sensor provides a potential way to be incorporated into micro-flow chips to quantitatively detect biological molecules in a real-time and online manner.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Glucose Oxidase , Fibras Ópticas , Fosfolipases
3.
Nanoscale ; 12(26): 14188-14193, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32602875

RESUMO

Carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene have great potential for high-performance all-carbon photodetectors due to their unique optical and electronic properties. Here, we assemble a hybrid CNT/graphene film prepared by depositing CNTs on a single layer graphene with a side-polished optical fiber to achieve a novel all-fiber integrated photodetector. Because CNTs strongly enhanced the interaction between graphene and the fiber mode, the photodetector shows an extra-high photoresponsivity over the visible and infrared region. Especially at 1550 nm, the photoresponsivity is found to be ∼1.48 × 105 A W-1, which is 6.5 times larger than those of photodetectors without CNTs. These findings provide a highly versatile, reproducible, and low-cost platform to integrate novel zero-, one-, and two-dimensional materials into optical fibers and deliver more sophisticated functionalities.

4.
Opt Express ; 28(10): 15641-15651, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403587

RESUMO

A core-removed D-shaped structure with different residual thickness (RT) was manufactured on a single mode silica fiber (SMF) to enhance the sensitivity by using of ultra-precise polishing technology. With six different RTs ranging from ∼55 µm to ∼28 µm, the RT enhancement effect in a D-shaped SMF was researched in detail. The influence of the RT on its transmission spectra was investigated both theoretically and experimentally. Considering a compromise between the multimode interference efficiency and optical power loss, an optimum RT value of 34.09 µm was achieved. The obtained refractive index (RI) sensitivity was 10243 nm/RIU in the RI range of 1.430-1.444, corresponding to a RI resolution of 1.9×10-6 RIU. A high-performance all-fiber sensor was developed to monitor the evaporation process volatile organic compounds (VOCs) based on the RT-enhanced D-shaped SMF. As proof of concept, a 2-hour continuous monitoring was carried to monitor the chloroform and alcohol mixture. As a result, the evaporation of alcohol and chloroform were clearly identified and monitored. The developed RT-enhanced D-shaped fiber sensor provides an alternative way for chemical process monitoring and industrial applications.

5.
Nanoscale ; 12(17): 9800-9809, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32328601

RESUMO

The coupling of the optical and mechanical degrees of freedom using optical force in nano-devices offers a novel mechanism to implement all-optical signal processing. However, the ultra-weak optical force requires a high pump optical power to realize all-optical processing. For such devices, it is still challenging to lower the pump power and simultaneously broaden the bandwidth of the signal light under processing. In this work, a simple and cost-effective optomechanical scheme was demonstrated that was capable of achieving a broadband (208 nm) and micro-Watt (∼624.13 µW) light-control-light effect driven by a relatively weak optical force (∼3 pN). In the scheme, a tapered nanofiber (TNF) was evanescently coupled with a substrate, allowing the pump light guided in the TNF to generate a strong transverse optical force for the light-control-light effect. Additionally, thanks to the low stiffness (5.44 fN nm-1) of the TNF, the light-control-light scheme also provided a simple method to measure the static weak optical force with a minimum detectable optical force down to 380.8 fN. The results establish TNF as a cost-effective scheme to break the limitation of the modulation wavelength bandwidth (MWB) at a low pump power and show that the TNF-optic optomechanical system can be well described as a harmonic oscillator.

6.
Photoacoustics ; 17: 100158, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31956488

RESUMO

Pilot line manufactured custom quartz tuning forks (QTFs) with a resonance frequency of 28 kHz and a Q value of >30, 000 in a vacuum and ∼ 7500 in the air, were designed and produced for trace gas sensing based on quartz enhanced photoacoustic spectroscopy (QEPAS). The pilot line was able to produce hundreds of low-frequency custom QTFs with small frequency shift < 10 ppm, benefiting the detecting of molecules with slow vibrational-translational (V-T) relaxation rates. An Au film with a thickness of 600 nm were deposited on both sides of QTF to enhance the piezoelectric charge collection efficiency and reduce the environmental electromagnetic noise. The laser focus position and modulation depth were optimized. With an integration time of 84 s, a normalized noise equivalent absorption (NNEA) coefficient of 1.7 × 10-8 cm-1∙W∙Hz-1/2 was achieved which is ∼10 times higher than a commercially available QTF with a resonance frequency of 32 kHz.

7.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795247

RESUMO

A novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor based on a micro quartz tuning fork (QTF) is reported. As a photoacoustic transducer, a novel micro QTF was 3.7 times smaller than the usually used standard QTF, resulting in a gas sampling volume of ~0.1 mm3. As a proof of concept, water vapor in the air was detected by using 1.39 µm distributed feedback (DFB) laser. A detailed analysis of the performance of a QEPAS sensor based on the micro QTF was performed by detecting atmosphere H2O. The laser focus position and the laser modulation depth were optimized to improve the QEPAS excitation efficiency. A pair of acoustic micro resonators (AmRs) was assembled with the micro QTF in an on-beam configuration to enhance the photoacoustic signal. The AmRs geometry was optimized to amplify the acoustic resonance. With a 1 s integration time, a normalized noise equivalent absorption coefficient (NNEA) of 1.97 × 10-8 W·cm-1·Hz-1/2 was achieved when detecting H2O at less than 1 atm.

8.
Sensors (Basel) ; 19(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487884

RESUMO

A detailed investigation of the influence of quartz tuning forks (QTFs) resonance properties on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) exploiting QTFs as acousto-electric transducers is reported. The performance of two commercial QTFs with the same resonance frequency (32.7 KHz) but different geometries and two custom QTFs with lower resonance frequencies (2.9 KHz and 7.2 KHz) were compared and discussed. The results demonstrated that the fundamental resonance frequency as well as the quality factor and the electrical resistance were strongly inter-dependent on the QTF prongs geometry. Even if the resonance frequency was reduced, the quality factor must be kept as high as possible and the electrical resistance as low as possible in order to guarantee high QEPAS performance.

9.
Opt Express ; 26(13): 17378-17387, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119549

RESUMO

A pure vortex beam carrying m-order orbital angular momentum (OAM) will be deformed when transmitting through a thin slab, and "neighboring" sideband {m + 1} and {m-1} modes will emerge. The emergence of the OAM sideband is accompanied with OAM-dependent Goos-Hänchen (GH) shift. When the energies carried by the {m} mode of the transmitted beam and by the sideband modes are identical, the OAM-dependent shifts reach their upper limits, |m|w0/2(|m| + 1)1/2, where w0 is the incident beam waist. The epsilon-near-zero metamaterial is found to be suitable to achieve the upper-limited OAM-dependent GH shifts. These findings provide a deeper insight into the beam shifts of vortex beams and have potential applications in the optical sensing, detection of OAM, and other OAM-based applications.

10.
Opt Express ; 26(11): 13759-13772, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877424

RESUMO

The effective mode index (EMI) of a graphene-coated side-polished fiber (GSPF) is calculated numerically. Whereby, the influences of graphene atom layer number, residual radius of SPF, light frequency, scattering rate of graphene, and temperature on the EMI are investigated comprehensively. Two types of mechanisms for the electro-optical absorption modulation are found for such GSPF-based modulator. One mechanism is Pauli blocking effect (PBE) and the other is plasmonic attenuation effect (PAE). With the optimal design parameters, a PBE-based modulator is theoretically predicted to have a 0.0072 dB/µm modulation depth, 2.92 V driving voltage swing, 6.35 nJ/bit power consumption, and 56.2 THz optical modulation bandwidth. It is also predicted that a PAE-based modulator could have a 0.0056 dB/µm modulation depth, 0.6 V driving voltage swing, 0.27 nJ/bit power consumption, and 2.5 THz optical modulation bandwidth. By further optimization, the modulator performance such as the relatively high power consumption and the narrow operation bandwidth can be improved. Owing to their seamless connection to optical fiber networks, the GSPF-based modulators have great potential to be used in fast and high-capacity optical communication systems.

11.
Opt Lett ; 43(12): 2823-2826, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905698

RESUMO

Upon reflection, a light beam embedded with m-order orbital angular momentum (OAM) will undergo the Imbert-Fedorov (IF) shift, which induces OAM sidebands. The energies of the neighboring {-m-1} and {-m+1} sideband modes of the reflected beam are always equal. Controllable OAM sidebands are theoretically achieved by introducing a monolayer graphene in a three-layer structure composed of air, hexagonal boron nitride, and metal. By modulating the Fermi energy of graphene, the OAM-dependent IF shift can be tuned from positive to negative values, and the OAM sideband modes can be suppressed or enhanced, since the reflectivity for perpendicular and parallel polarizations vary with the Fermi energy. These findings provide an alternative method for the control of optical OAM in the terahertz region.

12.
Opt Express ; 26(8): 9686-9699, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715917

RESUMO

A novel fiber structure, coreless side-polished fiber (CSPF) that is wrapped by polydimethylsiloxane (PDMS), is demonstrated to be highly sensitive to temperature because of the high refractive index sensitivity of the CSPF and the large thermal optic coefficient of the PDMS. Our numerical and experimental results show that the several dips in the transmitted spectra of PDMSW-CSPF is originated from the multimode interference (MMI) in the CSPF and will blueshift with the increase of temperature. Furthermore, for such a PDMSW-CSPF, we investigate its temperature sensing characteristics and the influences of residual thickness (RT) and dip wavelength on the sensitivity both numerically and experimentally. In the temperature range of 30~85°C, the PDMSW-CSPF with RT = 43.26 µm exhibits a high temperature sensitivity of -0.4409 nm/°C, the high linearity of 0.9974, and the high stability with low standard deviation of 0.141 nm. Moreover, in the cycle experiments, where the environmental temperature was set to automatically increase and then decrease, the PDMSW-CSPF exhibits a low relative deviation of sensitivity (RSD) of down to ± 0.068%. Here, the RSD is defined as the ratio of sensitivity deviation to the average sensitivity measured in the heating/cooling cycle experiments. The lower RSD indicates that PDMSW-CSPF has better reversibility than other fiber structure. The investigations also show that the sensitivity of the PDMSW-CSPF could be enhanced further by reducing the residual thickness and choosing the dip at a longer wavelength.

13.
ACS Appl Mater Interfaces ; 10(6): 5933-5940, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29393620

RESUMO

We propose and demonstrate a novel strategy to modify the plasmonic interface by using a thin layer of halloysite nanotubes (HNTs). The modified surface plasmon resonance (SPR) sensor achieves a greatly improved sensitivity because the large surface area and high refractive index of the HNTs layer significantly increase the probing electric field intensity and hence the measurement sensitivity. More significantly, the thickness of the HNTs layer can be tailored by spraying different concentrations of HNTs ethanol suspension. The proposed sensors show significant superiority in terms of the highest sensitivity (10431 nm/RIU) and the enhancement fold (5.6-folds) over those reported previously. Additionally, the proposed approach is a chemical-free and environment-friendly modification method for the sensor interface, without additional chemical or biological amplification steps (no toxic solvents are used). These unique features make the proposed HNTs-SPR biosensor a simple, biocompatible, and low-cost platform for the trace-level detection of biochemical species in a rapid, sensitive, and nondestructive manner.

14.
Opt Express ; 25(9): 9823-9833, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468362

RESUMO

In this paper, a side-polished fiber (SPF) coated with molybdenum diselenide (MoSe2) is proposed, and its characteristic of relative humidity (RH) sensing is investigated. It is found in the experiment that an enhancement in RH sensitivity (0.321 dB/%RH) can be achieved in a very wide RH range of 32%RH to 73%RH for the proposed MoSe2 coated SPF (MoSe2CSPF). It is also shown that the MoSe2CSPF has a rapid response of 1s and recovery time of 4s, which makes the sensor capable of monitoring human breath. The experimental results suggest MoSe2 has a promising potential in photonics applications such as all-fiber optic humidity sensing networks.

15.
Opt Express ; 25(5): 5196-5205, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380784

RESUMO

We show theoretically that after transmitted through a thin anisotropic ε-near-zero metamaterial, a linearly polarized Gaussian beam can undergo both transverse spatial and angular spin splitting. The upper limits of spatial and angular spin splitting are found to be the beam waist and divergence angle of incident Gaussian beam, respectively. The spin splitting of transmitted beam after propagating a distance z depends on both the spatial and angular spin splitting. By combining the spatial and angular spin splitting properly, we can maximize the spin splitting of propagated beam, which is nearly equal to the spot size of Gaussian beam w(z).

16.
Opt Express ; 25(5): 5352-5365, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380797

RESUMO

A novel fiber structure, coreless side-polished fiber (CSPF), is proposed and investigated to implement multimode interference (MMI) and high sensitive refractive index (RI) sensors. For such CSPF, the part of the cladding and the core of a single-mode fiber are side-polished off so as to make the remained cladding a D-shaped multimode waveguide. The excitation and evolution of MMI in the CSPF are simulated numerically. The simulation results show that the high-order modes excited within the D-shaped multimode waveguide are mainly TE0,1 (TM0,1)~TE0,6 (TM0,6) modes. Moreover, the RI sensing characteristics and the influences of residual thickness and dip wavelength on the sensitivity are investigated both numerically and experimentally. The experimental results show that the CSPF with a residual thickness of 43.1 µm can reach an ultra-high sensitivity of 28000 nm/RIU in the RI range of 1.442~1.444. It is also found that the sensitivity can be further increased by reducing the residual thickness and choosing the dip at a longer wavelength. Thanks to the ultra-high RI sensitivity and the ease of fabrication, the CSPF could provide a cost-effective platform to build high-performance fiber devices of various functions.

17.
Opt Express ; 25(5): 5415-5425, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380802

RESUMO

Reduced graphene oxide (rGO) sheet wrapped on the tapered region of microfiber is demonstrated to enhance the interaction between rGO and strong evanescent field of optical fiber. The 405 nm and 980 nm lasers are employed to illuminate the rGO to investigate the response characteristics of the optical transmitted power (λ = 1550 nm) in the MF. The transmitted optical power of the MF with rGO changes with ~1.7 dB relative variation when the violet light is ranging from 0 mW to 12 mW (~0.21dB/mW) in the outside-pumped experiment. And in the inside-pumped experiment, the change of the 980 nm laser power from 0 mW to 156.5 mW makes ~6 dB relative variation power of the transmitted optical powers of the MF with rGO. These results indicate the optical transmitted power of the MF with wrapped rGO can be manipulated by the 405 and 980 nm light (order of mW), which signifies the device can potentially be applied as all optically and versatilely controllable devices.

18.
Sci Rep ; 7(1): 1150, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442787

RESUMO

Optical spin splitting has a promising prospect in quantum information and precision metrology. Since it is typically small, many efforts have been devoted to its enhancement. However, the upper limit of optical spin splitting remains uninvestigated. Here, we investigate systematically the in-plane spin splitting of a Gaussian beam reflected from a glass-air interface and find that the spin splitting can be enhanced in three different incident angular ranges: around the Brewster angle, slightly smaller than and larger than the critical angle for total reflection. Within the first angular range, the reflected beam can undergo giant spin splitting but suffers from low energy reflectivity. In the second range, however, a large spin splitting and high energy reflectivity can be achieved simultaneously. The spin splitting becomes asymmetrical within the last angular range, and the displacement of one spin component can be up to half of incident beam waist w 0/2. Of all the incident angles, the spin splitting reaches its maximum at Brewster angle. This maximum splitting increases with the refractive index of the "glass" prism, eventually approaching an upper limit of w 0. These findings provide a deeper insight into the optical spin splitting phenomena and thereby facilitate the development of spin-based applications.

19.
Opt Express ; 24(25): 28290-28302, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958540

RESUMO

A fiber-optic toluene gas sensor based on reduced graphene oxide (rGO) is demonstrated and its sensing property is investigated experimentally and theoretically. The rGO film is deposited on a side polished fiber (SPF), allowing the strong interaction between rGO film and propagating field and making the SPF sensitive to toluene gas. It is found that the sensor has good linearity and reversibility and can work at room temperature with the response and the recovery time of 256 s and the detection limit of 79 ppm. Moreover, a theoretical model for the sensor is established to analyze the sensing mechanism. Theoretical analysis indicates this type of sensor could work in a wide range of toluene gas concentration and shows that a significant rise in its sensitivity can be expected by adjusting the doping level or chemical potential of graphene.

20.
Opt Express ; 24(8): 8956-66, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137326

RESUMO

We demonstrate a novel all-fiber-optic humidity sensor comprised of a WS2 film overlay on a side polished fiber (SPF). This sensor can achieve optical power variation of up to 6 dB in a relative humidity (RH) range of 35%-85%. In particular, this novel humidity fiber sensor has a linear correlation coefficient of 99.39%, sensitivity of 0.1213 dB/%RH, and a humidity resolution of 0.475%RH. Furthermore, this sensor shows good repeatability and reversibility, and fast response to breath stimulus. This WS2 based all-fiber optic humidity sensor is easy to fabricate, is compatible with pre-established fiber optic systems, and holds great potential in photonics applications such as in all-fiber optic humidity sensing networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...