Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(16): e202219034, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36789864

RESUMO

Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.


Assuntos
Cobre , Oxirredutases , Cobre/metabolismo , Estereoisomerismo , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Ceruloplasmina/metabolismo , Indóis
2.
Nature ; 611(7937): 715-720, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130726

RESUMO

Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis1-3. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction4-6. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme-substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity7-10 of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.


Assuntos
Biocatálise , Reação de Cicloadição , Enzimas , Processos Fotoquímicos , Biocatálise/efeitos da radiação , Transferência de Energia , Estereoisomerismo , Enzimas/genética , Enzimas/metabolismo , Enzimas/efeitos da radiação , Indóis/química , Especificidade por Substrato , Cristalização , Evolução Molecular Direcionada/métodos
3.
Angew Chem Int Ed Engl ; 61(31): e202205159, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35612900

RESUMO

Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.


Assuntos
Aminas , Indóis , Aminação , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...