Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Biomater ; 179: 325-339, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561074

RESUMO

Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. SAH disrupts the blood‒brain barrier, leading to the release of iron ions from blood within the subarachnoid space, subsequently inducing neuronal ferroptosis. A recently discovered protein, known as ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10 by introducing the neuron-targeting peptide Tet1 onto the surface of liposomal CoQ10. Our objective was to determine whether this formulation could activate the FSP1 system and subsequently inhibit neuronal ferroptosis. Our findings revealed that neuron-targeted liposomal CoQ10 effectively localized to neurons at the lesion site after SAH. Furthermore, it facilitated the upregulation of FSP1, reduced the accumulation of malondialdehyde and reactive oxygen species, inhibited neuronal ferroptosis, and exerted neuroprotective effects both in vitro and in vivo. Our study provides evidence that supplementation with CoQ10 can effectively activate the FSP1 system. Additionally, we developed a neuron-targeted liposomal CoQ10 formulation that can be selectively delivered to neurons at the site of SAH. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH. STATEMENT OF SIGNIFICANCE: Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. Ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10. We find that it effectively localized to neurons at the lesion site after SAH and activated the FSP1/CoQ10 system. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH and other central nervous system diseases characterized by disruption of the blood-brain barrier.


Assuntos
Ferroptose , Lipossomos , Neurônios , Hemorragia Subaracnóidea , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Animais , Ferroptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Lipossomos/química , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL
3.
Acta Biomater ; 167: 534-550, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302734

RESUMO

Currently, the treatment of triple-negative breast cancer (TNBC) is limited by the special pathological characteristics of this disease. In recent years, photodynamic therapy (PDT) has created new hope for the treatment of TNBC. Moreover, PDT can induce immunogenic cell death (ICD) and improve tumor immunogenicity. However, even though PDT can improve the immunogenicity of TNBC, the inhibitory immune microenvironment of TNBC still weakens the antitumor immune response. Therefore, we used the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by TNBC cells to improve the tumor immune microenvironment and enhance antitumor immunity. In addition, bone mesenchymal stem cell (BMSC)-derived sEVs have good biological safety and a strong drug loading capacity, which can effectively improve the efficiency of drug delivery. In this study, we first obtained primary BMSCs and sEVs, and then the photosensitizers Ce6 and GW4869 were loaded into the sEVs by electroporation to produce immunomodulatory photosensitive nanovesicles (Ce6-GW4869/sEVs). When administered to TNBC cells or orthotopic TNBC models, these photosensitive sEVs could specifically target TNBC and improve the tumor immune microenvironment. Moreover, PDT combined with GW4869-based therapy showed a potent synergistic antitumor effect mediated by direct killing of TNBC and activation of antitumor immunity. Here, we designed photosensitive sEVs that could target TNBC and regulate the tumor immune microenvironment, providing a potential approach for improving the effectiveness of TNBC treatment. STATEMENT OF SIGNIFICANCE: We designed an immunomodulatory photosensitive nanovesicle (Ce6-GW4869/sEVs) with the photosensitizer Ce6 to achieve photodynamic therapy and the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by triple-negative breast cancer (TNBC) cells to improve the tumor immune microenvironment and enhance antitumor immunity. In this study, the immunomodulatory photosensitive nanovesicle could target TNBC cells and regulate the tumor immune microenvironment, thus providing a potential approach for improving the treatment effect in TNBC. We found that the reduction in tumor sEVs secretion induced by GW4869 improved the tumor-suppressive immune microenvironment. Moreover, similar therapeutic strategies can also be applied in other kinds of tumors, especially immunosuppressive tumors, which is of great value for the clinical translation of tumor immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Esfingomielina Fosfodiesterase , Compostos de Anilina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Esterases , Microambiente Tumoral , Linhagem Celular Tumoral
4.
World J Gastroenterol ; 28(37): 5403-5419, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36312831

RESUMO

Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. Currently, surgery is the main treatment for GIC. However, the high rate of postoperative recurrence leads to a low five-year survival rate. In recent years, immunotherapy has received much attention. As the only immunotherapy drugs approved by the Food and Drug Administration (FDA), immune checkpoint blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the efficacy of ICB treatment is greatly limited by the low immunogenicity and immunosuppressive microenvironment of GIC. Therefore, the targets of immunotherapy have expanded from ICB to increasing tumor immunogenicity, increasing the recruitment and maturation of immune cells and reducing the proportion of inhibitory immune cells, such as M2-like macrophages, regulatory T cells and myeloid-derived suppressor cells. Moreover, with the development of nanotechnology, a variety of nanoparticles have been approved by the FDA for clinical therapy, so novel nanodrug delivery systems have become a research focus for anticancer therapy. In this review, we summarize recent advances in the application of immunotherapy-based nanoparticles in GICs, such as gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described the existing challenges and future trends.


Assuntos
Carcinoma Hepatocelular , Neoplasias Gastrointestinais , Neoplasias Hepáticas , Nanopartículas , Humanos , Imunoterapia/efeitos adversos , Neoplasias Gastrointestinais/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
5.
J Nanosci Nanotechnol ; 15(1): 74-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328307

RESUMO

Malignant tumors are the most serious threat to human health. Much research has focused on revealing the characteristics of this disease and developing methods of treatment. Because tumor cells are more sensitive to heat than normal cells, thermotherapy for the treatment of tumors has attracted much attention. In this paper, we presented functional Mn-Zn ferrite nanoparticles with the molecular composition of Mn0.4Zn0.6Fe2O4 as the magnetic response material for the thermotherapy. The suggested Mn-Zn ferrite nanoparticles were with a self-regulation temperature of 43 degrees C which was ideal for tumor thermotherapy. The biocompatibility and anti-tumor effect of this material were well investigated. It was found that the Mn0.4Zn0.6Fe2O4 nanoparticles have no hemolysis activity, no genotoxic effects and cytotoxicity. Its Median Lethal Dose (LD50) arrived at 6.026 g/kg and it did not induce any abnormal clinical signs in laboratory animals. Moreover, the suggested nanoparticles can increase the inhibitory ratio of weight and volume of tumors, cause tumor tissues necrosis and show the therapeutic effect on the xenograft live cancers in vivo. Based on these results, we could envision the valuable application of the Mn0.4Zn0.6Fe2O4 nanoparticles for the practical thermotherapy.


Assuntos
Antineoplásicos/toxicidade , Materiais Biocompatíveis/toxicidade , Compostos Férricos/toxicidade , Hipertermia Induzida/métodos , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/toxicidade , Compostos de Zinco/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Compostos Férricos/uso terapêutico , Hemólise/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Masculino , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Compostos de Manganês/uso terapêutico , Camundongos , Coelhos , Compostos de Zinco/química , Compostos de Zinco/farmacologia , Compostos de Zinco/uso terapêutico
6.
Biomed Mater Eng ; 24(1): 599-607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24211944

RESUMO

This paper aimed to investigate the preparation of doxorubicin-loaded bovine serum albumin nanoparticles (DOX/BSANP) and their effect on killing liver cancer cells in vitro and in vivo. DOX/BSANP was prepared using a desolvation-chemical crosslinking method. Their morphology and particle size were observed using transmission electron microscopy (TEM). The envelopment, drug-loading rates and slow-release characteristics were determined spectrophotometrically. Their ability to kill liver cancer cells in vitro was determined using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry (FCM). The tumor-suppressing effect of the nanoparticles in experimental animals in vivo was also evaluated. Under TEM, DOX/BSANP appeared spherical and was distributed uniformly, with a diameter of about 120 nm and hydrated particle size of 170 nm determined by dynamic light diffraction. The envelopment rate was 82% and the drug-loading rate was 11.2%. The in vitro drug-release experiment showed that about 50% of the drug in drug-loaded nanoparticles was released continuously and slowly for 7 days. The MTT assay showed that DOX/BSANP significantly inhibited cell proliferation, while FCM showed that it induced tumor cell apoptosis. The in vivo tumor suppression test showed that the therapeutic effect of drug-loaded nanoparticles was superior to that of DOX alone.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Soroalbumina Bovina/química , Albuminas/química , Animais , Antineoplásicos/química , Apoptose , Bovinos , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Modelos Animais de Doenças , Portadores de Fármacos/química , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Luz , Modelos Lineares , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Transplante de Neoplasias , Tamanho da Partícula , Espectrofotometria , Temperatura , Fatores de Tempo
7.
Int J Nanomedicine ; 6: 3077-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163161

RESUMO

BACKGROUND: The purpose of this study was to develop intraperitoneal hyperthermic therapy based on magnetic fluid hyperthermia, nanoparticle-wrapped cisplatin chemotherapy, and magnetic particles of albumin. In addition, to combine the multiple-killing effects of hyperthermal targeting therapy, chemotherapy, and radiotherapy, the albumin-nanoparticle surfaces were linked with radionuclide (188)Re-labeled folic acid ligand ((188)Re-folate-CDDP/HSA). METHODS: Human serum albumin was labeled with (188)Re using the pre-tin method. Reaction time and optimal conditions of labeling were investigated. The particles were intravenously injected into mice, which were sacrificed at different time points. Radioactivity per gram of tissue of percent injected dose (% ID/g) was measured in vital organs. The biodistribution of (188)Re-folate-CDDP/HAS magnetic nanoparticles was assessed. RESULTS: Optimal conditions for (188)Re-labeled folate-conjugated albumin combined with cisplatin magnetic nanoparticles were: 0.1 mL of sodium gluconate solution (0.3 mol/L), 0.1 mL of concentrated hydrochloric acid with dissolved stannous chloride (10 mg/mL), 0.04 mL of acetic acid buffer solution (pH 5, 0.2 mol/L), 30 mg of folate-conjugated albumin combined with cisplatin magnetic nanoparticles, and (188)ReO(4) eluent (0.1 mL). The rate of (188)Re-folate-CDDP-HSA magnetic nanoparticle formation exceeded 90%, and radiochemical purity exceeded 95%. The overall labeling rate was 83% in calf serum at 37°C. The major uptake tissues were the liver, kidney, intestine, and tumor after the (188)Re-folate-CDDP/HSA magnetic nanoparticles were injected into nude mice. Uptake of (188)Re-folate-CDDP/HSA magnetic nanoparticles increased gradually after injection, peaked at 8 hours with a value of 8.83 ± 1.71, and slowly decreased over 24 hours in vivo. CONCLUSION: These results indicate that (188)Re-folate-CDDP/HSA magnetic nanoparticles can be used in radionuclide-targeted cancer therapy. Surface-modified albumin nanoparticles with folic acid ligand-labeled radionuclide ((188)Re) were successfully prepared, laying the foundation for a triple-killing effect of thermotherapy, chemotherapy, and radiation therapy.


Assuntos
Cisplatino/química , Ácido Fólico/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Radioisótopos/química , Rênio/química , Albumina Sérica/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Estabilidade de Medicamentos , Feminino , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Radioisótopos/farmacocinética , Radioisótopos/farmacologia , Rênio/farmacocinética , Rênio/farmacologia , Albumina Sérica/farmacocinética , Albumina Sérica/farmacologia , Temperatura , Compostos de Estanho/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biomaterials ; 29(17): 2673-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18396332

RESUMO

One of the main advantages of gene therapy over traditional therapy is the potential to target the expression of therapeutic genes in desired cells or tissues. To achieve targeted gene expression, we developed a novel heat-inducible gene expression system in which thermal energy generated by Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) under an alternating magnetic field (AMF) was used to activate gene expression. MZF-NPs, obtained by co-precipitation method, were firstly surface modified with cation poly(ethylenimine) (PEI). Then thermodynamic test of various doses of MZF-NPs was preformed in vivo and in vitro. PEI-MZF-NPs showed good DNA binding ability and high transfection efficiency. In AMF, they could rise to a steady temperature. To analyze the heat-induced gene expression under an AMF, we combined P1730OR vector transfection with hyperthermia produced by irradiation of MZF-NPs. By using LacZ gene as a reporter gene and Hsp70 as a promoter, it was demonstrated that expression of a heterogeneous gene could be elevated to 10 to 500-fold over background by moderate hyperthermia (added 12.24 or 25.81 mg MZF-NPs to growth medium) in tissue cultured cells. When injected with 2.6 or 4.6 mg MZF-NPs, the temperature of tumor-bearing nude mice could rise to 39.5 or 42.8 degrees C, respectively, and the beta-gal concentration could increase up to 3.8 or 8.1 mU/mg proteins accordingly 1 day after hyperthermia treatment. Our results therefore supported hyperthermia produced by irradiation of MZF-NPs under an AMF as a feasible approach for targeted heat-induced gene expression. This novel system made use of the relative low Curie point of MZF-NPs to control the in vivo hyperthermia temperature and therefore acquired safe and effective heat-inducible transgene expression.


Assuntos
Materiais Revestidos Biocompatíveis/efeitos da radiação , Compostos Férricos/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Hipertermia Induzida , Compostos de Manganês/efeitos da radiação , Nanopartículas/efeitos da radiação , Compostos de Zinco/efeitos da radiação , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/radioterapia , Linhagem Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , DNA/metabolismo , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Compostos Férricos/metabolismo , Compostos Férricos/farmacologia , Genes Reporter , Vetores Genéticos , Proteínas de Choque Térmico HSP70/genética , Humanos , Rim/citologia , Óperon Lac , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/radioterapia , Luciferases/metabolismo , Magnetismo/uso terapêutico , Masculino , Compostos de Manganês/metabolismo , Compostos de Manganês/farmacologia , Camundongos , Camundongos Nus , Tamanho da Partícula , Polietilenoimina/química , Regiões Promotoras Genéticas , Distribuição Aleatória , Termodinâmica , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Compostos de Zinco/metabolismo , Compostos de Zinco/farmacologia , beta-Galactosidase/análise , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA