Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416582

RESUMO

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

2.
J Colloid Interface Sci ; 634: 897-905, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566635

RESUMO

Aiming at the sluggish water dissociation step in alkaline hydrogen evolution reaction (HER), the platinum-nickel alloy material (PtNi10/C) featuring unique crystalline/amorphous structure supported on carbon black is deliberately designed and fabricated via a reversely rapid co-precipitation and mild thermal reduction strategy. Electrochemical results show that only 66 mV of overpotential is needed for PtNi10/C to drive a current density of 10 mA cm-2 at a lower platinum loading (8.3 µgPt cm-2 geo), which is much lower than that of other catalysts with a single metal source(S-Ni/C and S-Pt/C) and even the commercial Pt/C catalyst (20 wt%). The target catalyst also exhibits smaller tafel slope value (16.73 mV dec-1) and electrochemical impedance value, enabling a fast kinetics rate for water dissociation. Partial crystallization facilitates moderate adsorption of intermediates, while the high-valence Ni(II) and Pt(II) species serve as pivotal driving force for the kinetic dissociation of water. The unique microstructure of PtNi10/C shows a remarkable advantage toward HER in alkaline but acidic medium. In addition, other transition metal-based catalysts following the similar protocol are also fabricated and present varying degrees of HER performance. Hence, the facile and rapid co-precipitation/thermal reduction strategy proposed in this study provides some guidelines for designing high-efficiency alkaline HER catalysts.

3.
RSC Adv ; 12(11): 6533-6539, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424624

RESUMO

Hydrolysis of Mg-based materials is a promising technology for the development of portable hydrogen fuel cells. However, the Mg(OH)2 layer impedes the diffusion of water molecules into inner particles, resulting in sluggish hydrolysis performance. The hydrolysis performances of Mg-based materials (Mg, MgH2, MgH2-BM and MgH2-RBM) with water are effectively improved under light-activation. The hydrolysis performance could be tailored by the light energy (frequency and intensity). The combination of ball-milling and light-activation could further enhance the hydrolysis performance of MgH2. In particular, the hydrolysis yield of MgH2-RBM reached 95.7% of the theoretical yield under 90 W green light-activation. Thus, rasing the light energy (by using purple light and UV, or higher power lights) and the combination of ball-milling could lead to better hydrolysis performance of Mg-based materials. The Mg(OH)2 layer was considered as a barrier to MgH2 hydrolysis of MgH2. Interestingly, under light-activation, the Mg(OH)2 layer can act as a catalyst to enhance the decomposition of MgH2, and improve the hydrolysis yield and kinetics of Mg-based materials.

4.
Nanoscale ; 13(44): 18741-18753, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34746945

RESUMO

The high nickel layered oxide cathode is considered to be one of the most promising cathode materials for lithium-ion batteries because of its higher specific capacity and lower cost. However, due to the increased Ni content, residual lithium compounds inevitably exist on the surface of the cathode material, such as LiOH, Li2CO3, etc. At the same time, the intrinsic instability of the high nickel cathode material leads to the structural destruction and serious capacity degradation, which hinder practical applications. Here, we report a simple and scalable strategy using hydrolysis and lithiation process of aluminum isopropoxide (C9H21AlO3) and isopropyl titanate (C12H28O4Ti) to prepare a novel α-LiAlO2 and Li2TiO3 double-coated and Al3+ and Ti4+ co-doped cathode material (NCAT15). The Al and Ti doping stabilizes the layered structure due to the strong Al-O and Ti-O covalent bonds and relieves the Li+/Ni2+ cation disorder. Besides, the capacity of the cathode material for 100 cycles reaches 163.5 mA h g-1 and the capacity retention rate increases from 51.2% to 90.6% (at 1C). The microscopic characterization results show that the unique structure can significantly suppress side reactions at the cathode/electrolyte interface as well as the deterioration of structure and microcracks. This innovative design strategy combining elemental doping and construction of dual coating layers can be extended to other high nickel layered cathode materials and help improve their electrochemical performance.

5.
Front Chem ; 8: 388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500057

RESUMO

The SiO-based composites containing different carbon structures were prepared from asphalt and graphite by the milling, spray drying, and pyrolysis. In the obtained near-spherical composite particles, the refined amorphous SiO plates, which are coated with an amorphous carbon layer, are aggregated with the binding of graphite sheets. The SiO/C/Graphite composites present a maximum initial charge capacity of 963 mAh g-1 at 100 mA g-1, excellent cyclic stability (~950 mAh g-1 over 100 cycles), and rate capability with the charge capacity of 670 mAh g-1 at 1,000 mA g-1. This significant improvement of electrochemical performances in comparison with pristine SiO or SiO/C composite is attributed to the unique microstructure, in which both the graphite sheets and amorphous carbon coating could enhance the conductivity of SiO and buffer the volume change of SiO. The higher pyrolysis temperature causes the denser spherical microstructure and better cycle life. Our work demonstrates the potential of this SiO/C/Graphite composite for high capacity anode of LIBs.

6.
Nanoscale ; 5(15): 6790-6, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23765341

RESUMO

In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm(-2)) delivered a large areal capacitance of 3.18 F cm(-2) (234.2 F g(-1)) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm(-2)) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm(-3). Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10,000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...