Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 12478-12499, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524433

RESUMO

In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.

2.
Nature ; 627(8003): 382-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418878

RESUMO

Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.


Assuntos
Arabidopsis , Cálcio , Homeostase , Imunidade Vegetal , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citosol/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Antiporters/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(47): e2316011120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967217

RESUMO

Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio da Dieta , Proteínas de Plantas/metabolismo
4.
Dent J (Basel) ; 11(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37754333

RESUMO

Ledge formation presents a significant challenge in endodontic treatment. Yet, there is still a lack of educational tooth models for hands-on practice. This study aimed to create and evaluate a tooth model for ledge management practice. A natural tooth with curved roots was collected for scientific use under ethics committee approval. Following initial root canal preparation, the tooth was scanned using micro-computed tomography (µCT) and 3D reconstructed. A K-file, created via computer-aided design (CAD), was partly inserted into the root canal wall of the 3D reconstructed tooth. By subtracting the K-file from the tooth, a tooth model with a root canal ledge was produced. The model was then 3D printed for a hands-on workshop. An eight-item Likert-scale questionnaire was administered to 20 postgraduate students and 10 endodontists to assess the model's quality and training effectiveness. In addition, the success rate of bypassing and correcting the root canal ledge was documented. The feedback from both the students and experts was positive, and the results of the Mann-Whitney U test indicated no statistically significant differences found between the two groups (p > 0.05). The success rate of the students and the experts was 85% and 100%, respectively. In future applications, this novel tooth model is expected to address the existing gap in endodontic education and provide benefits for dental practitioners.

5.
J Ethnobiol Ethnomed ; 19(1): 32, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501198

RESUMO

BACKGROUNDS: Guangxi Fangcheng Golden Camellias national nature reserve, situated in Fangcheng City, Guangxi Province, China, is a coastal region renowned for its exceptional natural environment. Over time, the residents of this area have acquired extensive knowledge regarding medicinal plants, owing to their close association with the abundant flora. Our study aims to document the medicinal plants used by the local community near the Guangxi Fangcheng Golden Camellias national nature reserve. We seek to investigate the unique regional properties, cultural significance, and potential connections between medicinal plants used in surrounding villages and those sold in markets. METHODS: During 2019-2021, 96 informants, including 36 key informants, were interviewed in the study area. The snowball sampling method was used to select respondents from medicinal markets and villages. Local therapists were defaulted as key informants. A panel discussion was held on the protection and threat of medicinal plants and traditional knowledge. In this study, two quantitative indicators, relative frequency citation (RFC) and informant consensus factor (ICF), were used to analyze the traditional medicinal plants in the study area. RESULTS: According to the investigation, a total of 396 species of medicinal plants belonging to 295 genera and 116 families were recorded. From the perspective of Lifeform, herbs accounted for 38.9%, followed by shrubs. Most of the medicinal parts are whole plant (120 species, 25.59%), branches and leaves (116 species, 24.73%), and roots (101 species, 21.54%). Medicinal bath is the most commonly used therapeutic method. Among the 13 therapeutic targets recorded, rheumatic drugs accounted for the highest proportion, followed by muscular system diseases and skin-related diseases, which are closely related to local climate and livelihood. ICF shows that the use of local medicinal plants and related knowledge is very diverse, so local people have more options for treating diseases. Melicope pteleifolia, Clerodendrum cyrtophyllum, Lygodium flexuosum, Elephantopus scaber, Artemisia argyi, Plantago asiatica, Centella asiatica, Grangea maderaspatana, and Liquidambar formosana have high RFC, which are closely connected to local people's daily lives and are potentially vital to them. The wild vegetation, mostly around the nature reserve, is the primary source of medicinal materials sold in the urban medicinal market. Urban areas have fewer varieties of medicinal plants compared to villages near protected areas. However, there is consistency in their usage and application. CONCLUSION: The medicinal plants used in the villages near the Golden Camellia Nature Reserve are diverse, and the relevant traditional knowledge is relatively well preserved. The collection of medicinal materials by local people is sustainable. This study suggests that the local government should also protect relevant traditional knowledge in the decision-making process.


Assuntos
Plantas Medicinais , Humanos , Etnobotânica/métodos , Fitoterapia/métodos , China , Inquéritos e Questionários
6.
Heart Fail Rev ; 28(2): 331-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792818

RESUMO

Heart failure (HF) is one of the leading causes of global health impairment. Current drugs are still limited in their effectiveness in the treatment and reversal of HF: for example, drugs for acute HF (AHF) help to reduce congestion and relieve symptoms, but they do little to improve survival; most conventional drugs for HF with preserved ejection fraction (HFpEF) do not improve the prognosis; and drugs have extremely limited effects on advanced HF. In recent years, progress in device therapies has bridged this gap to a certain extent. For example, the availability of the left ventricular assist device has brought new options to numerous advanced HF patients. In addition to this recognizable device, a range of promising novel devices with preclinical or clinical trial results are emerging that seek to treat or reverse HF by providing circulatory support, repairing structural abnormalities in the heart, or providing electrical stimulation. These devices may be useful for the treatment of HF. In this review, we summarized recent advances in novel devices for AHF, HFpEF, and HF with reduced ejection fraction (HFrEF) with the aim of providing a reference for clinical treatment and inspiration for novel device development.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico/fisiologia , Prognóstico , Função Ventricular Esquerda/fisiologia
7.
Nat Commun ; 14(1): 360, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690625

RESUMO

Under low-potassium (K+) stress, a Ca2+ signaling network consisting of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs) play essential roles. Specifically, the plasma membrane CBL1/9-CIPK pathway and the tonoplast CBL2/3-CIPK pathway promotes K+ uptake and remobilization, respectively, by activating a series of K+ channels. While the dual CBL-CIPK pathways enable plants to cope with low-K+ stress, little is known about the early events that link external K+ levels to the CBL-CIPK proteins. Here we show that K+ status regulates the protein abundance and phosphorylation of the CBL-CIPK-channel modules. Further analysis revealed low K+-induced activation of VM-CBL2/3 happened earlier and was required for full activation of PM-CBL1/9 pathway. Moreover, we identified CIPK9/23 kinases to be responsible for phosphorylation of CBL1/9/2/3 in plant response to low-K+ stress and the HAB1/ABI1/ABI2/PP2CA phosphatases to be responsible for CBL2/3-CIPK9 dephosphorylation upon K+-repletion. Further genetic analysis showed that HAB1/ABI1/ABI2/PP2CA phosphatases are negative regulators for plant growth under low-K+, countering the CBL-CIPK network in plant response and adaptation to low-K+ stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Nutrientes , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo
8.
Opt Express ; 30(15): 26534-26543, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236849

RESUMO

Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.

9.
New Phytol ; 236(2): 464-478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35776059

RESUMO

Magnesium (Mg2+ ) serves as a cofactor for a number of photosynthetic enzymes in the chloroplast, and is the central atom of the Chl molecule. However, little is known about the molecular mechanism of Mg2+ transport across the chloroplast envelope. Here, we report the functional characterization of two transport proteins in Arabidopsis: Magnesium Release 8 (MGR8) and MGR9, of the ACDP/CNNM family, which is evolutionarily conserved across all lineages of living organisms. Both MGR8 and MGR9 genes were expressed ubiquitously, and their encoded proteins were localized in the inner envelope of chloroplasts. Mutations of MGR8 and MGR9 together, but neither of them alone, resulted in albino ovules and chlorotic seedlings. Further analysis revealed severe defects in thylakoid biogenesis and assembly of photosynthetic complexes in the double mutant. Both MGR8 and MGR9 functionally complemented the growth of the Salmonella typhimurium mutant strain MM281, which lacks Mg2+ uptake capacity. The embryonic and early seedling defects of the mgr8/mgr9 double mutant were rescued by the expression of MGR9 under the embryo-specific ABI3 promoter. The partially rescued mutant plants were hypersensitive to Mg2+ deficient conditions and contained less Mg2+ in their chloroplasts than wild-type plants. Taken together, we conclude that MGR8 and MGR9 serve as Mg2+ transporters and are responsible for chloroplast Mg2+ uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plântula/metabolismo , Tilacoides/metabolismo
10.
Plant Physiol ; 190(2): 1307-1320, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35809075

RESUMO

Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiência de Magnésio , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcineurina/genética , Proteínas de Transporte/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Magnésio/metabolismo , Deficiência de Magnésio/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
11.
iScience ; 25(2): 103754, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146383

RESUMO

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.

12.
Mol Plant ; 15(5): 805-819, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063662

RESUMO

Magnesium (Mg2+), an essential structural component of chlorophyll, is absorbed from the soil by roots and transported to shoots to support photosynthesis in plants. However, the molecular mechanisms underlying root-to-shoot Mg2+ translocation remain largely unknown. We describe here the identification of four plasma membrane (PM)-localized transporters, named Mg2+ release transporters (MGRs), that are critical for root-to-shoot Mg transport in Arabidopsis. Functional complementation assays in a Mg2+-uptake-deficient bacterial strain confirmed that these MGRs conduct Mg2+ transport. PM-localized MGRs (MGR4, MGR5, MGR6, and MGR7) were expressed primarily in root stellar cells and participated in the xylem loading step of the long-distance Mg2+ transport process. In particular, MGR4 and MGR6 played a major role in shoot Mg homeostasis, as their loss-of-function mutants were hypersensitive to low Mg2+ but tolerant to high Mg2+ conditions. Reciprocal grafting analysis further demonstrated that MGR4 functions in the root to determine shoot Mg2+ accumulation and physiological phenotypes caused by both low- and high-Mg2+ stress. Taken together, our study has identified the long-sought transporters responsible for root-to-shoot Mg2+ translocation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
13.
Nat Plants ; 8(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087208

RESUMO

Magnesium (Mg2+) is an essential nutrient for all life forms. In fungal and plant cells, the majority of Mg2+ is stored in the vacuole but mechanisms for Mg2+ transport into the vacuolar store are not fully understood. Here we demonstrate that members of ancient conserved domain proteins (ACDPs) from Saccharomyces cerevisiae and Arabidopsis thaliana function in vacuolar Mg2+ sequestration that enables plant and yeast cells to cope with high levels of external Mg2+. We show that the yeast genome (as well as other fungal genomes) harbour a single ACDP homologue, referred to as MAM3, that functions specifically in vacuolar Mg2+ accumulation and is essential for tolerance to high Mg. In parallel, vacuolar ACDP homologues were identified from Arabidopsis and shown to complement the yeast mutant mam3Δ. An Arabidopsis mutant lacking one of the vacuolar ACDP homologues displayed hypersensitivity to high-Mg conditions and accumulated less Mg in the vacuole compared with the wild type. Taken together, our results suggest that conserved transporters mediate vacuolar Mg2+ sequestration in fungal and plant cells to maintain cellular Mg2+ homeostasis in response to fluctuating Mg2+ levels in the environment.


Assuntos
Proteínas de Arabidopsis , Saccharomyces cerevisiae , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Magnésio/metabolismo , Mutação , Células Vegetais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171866

RESUMO

Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.


Assuntos
Camellia/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Camellia/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poliploidia , Sementes/metabolismo , Estresse Fisiológico/genética
16.
Nat Plants ; 6(7): 742-743, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541954
17.
Trends Plant Sci ; 25(6): 604-617, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407699

RESUMO

Calcium (Ca2+) serves as an essential nutrient as well as a signaling agent in all eukaryotes. In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). Interactions between CBLs and CIPKs constitute a signaling network that enables information integration and physiological coordination in response to a variety of extracellular cues such as nutrient deprivation and abiotic stresses. Studies in the past two decades have established a unified paradigm that illustrates the functions of CBL-CIPK complexes in controlling membrane transport through targeting transporters and channels in the plasma membrane and tonoplast.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
18.
Nat Plants ; 6(6): 718, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427960

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Plants ; 6(4): 384-393, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231253

RESUMO

Potassium (K) is an essential nutrient, but levels of the free K ions (K+) in soil are often limiting, imposing a constant stress on plants. We have discovered a calcium (Ca2+)-dependent signalling network, consisting of two calcineurin B-like (CBL) Ca2+ sensors and a quartet of CBL-interacting protein kinases (CIPKs), which plays a key role in plant response to K+ starvation. The mutant plants lacking two CBLs (CBL2 and CBL3) were severely stunted under low-K conditions. Interestingly, the cbl2 cbl3 mutant was normal in K+ uptake but impaired in K+ remobilization from vacuoles. Four CIPKs-CIPK3, 9, 23 and 26-were identified as partners of CBL2 and CBL3 that together regulate K+ homeostasis through activating vacuolar K+ efflux to the cytoplasm. The vacuolar two-pore K+ (TPK) channels were directly activated by the vacuolar CBL-CIPK modules in a Ca2+-dependent manner, presenting a mechanism for the activation of vacuolar K+ remobilization that plays an important role in plant adaptation to K+ deficiency.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio , Potássio/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Homeostase , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Nicotiana/genética , Vacúolos/metabolismo
20.
Front Plant Sci ; 11: 602782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391315

RESUMO

Mitochondrial transcription termination factors (mTERFs) are highly conserved proteins in metazoans. Plants have many more mTERF proteins than animals. The functions and the underlying mechanisms of plants' mTERFs remain largely unknown. In plants, mTERF family proteins are present in both mitochondria and plastids and are involved in gene expression in these organelles through different mechanisms. In this study, we screened Arabidopsis mutants with pigment-defective phenotypes and isolated a T-DNA insertion mutant exhibiting seedling-lethal and albino phenotypes [seedling lethal 1 (sl1)]. The SL1 gene encodes an mTERF protein localized in the chloroplast stroma. The sl1 mutant showed severe defects in chloroplast development, photosystem assembly, and the accumulation of photosynthetic proteins. Furthermore, the transcript levels of some plastid-encoded proteins were significantly reduced in the mutant, suggesting that SL1/mTERF3 may function in the chloroplast gene expression. Indeed, SL1/mTERF3 interacted with PAP12/PTAC7, PAP5/PTAC12, and PAP7/PTAC14 in the subgroup of DNA/RNA metabolism in the plastid-encoded RNA polymerase (PEP) complex. Taken together, the characterization of the plant chloroplast mTERF protein, SL1/mTERF3, that associated with PEP complex proteins provided new insights into RNA transcription in the chloroplast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...