Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nanotechnology ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768585

RESUMO

Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials; they are key to many technological innovations to meet economic and societal needs. Along with many researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated "Smart & Functional Materials" as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject including our own research and key research literature in the context of the UN Sustainability development goals.

2.
JOR Spine ; 7(2): e1333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660017

RESUMO

Background: Intervertebral disk (IVD) degeneration affects both humans and canines and is a major cause of low back pain (LBP). Mast cell (MC) and macrophage (MØ) infiltration has been identified in the pathogenesis of IVD degeneration (IVDD) in the human and rodent model but remains understudied in the canine. MC degranulation in the IVD leads to a pro-inflammatory cascade and activates protease activated receptor 2 (PAR2) on IVD cells. The objectives of the present study are to: (1) highlight the pathophysiological changes observed in the degenerate canine IVD, (2) further characterize the inflammatory effect of MCs co-cultured with canine nucleus pulposus (NP) cells, (3) evaluate the effect of construct stiffness on NP and MCs, and (4) identify potential therapeutics to mitigate pathologic changes in the IVD microenvironment. Methods: Canine IVD tissue was isolated from healthy autopsy research dogs (beagle) and pet dogs undergoing laminectomy for IVD herniation. Morphology, protein content, and inflammatory markers were assessed. NP cells isolated from healthy autopsy (Mongrel hounds) tissue were co-cultured with canine MCs within agarose constructs and treated with cromolyn sodium (CS) and PAR2 antagonist (PAR2A). Gene expression, sulfated glycosaminoglycan content, and stiffness of constructs were assessed. Results: CD 31+ blood vessels, mast cell tryptase, and macrophage CD 163+ were increased in the degenerate surgical canine tissue compared to healthy autopsy. Pro-inflammatory genes were upregulated when canine NP cells were co-cultured with MCs and the stiffer microenvironment enhanced these effects. Treatment with CS and PAR2 inhibitors mediated key pro-inflammatory markers in canine NP cells. Conclusion: There is increased MC, MØs, and vascular ingrowth in the degenerate canine IVD tissue, similar to observations in the clinical population with IVDD and LBP. MCs co-cultured with canine NP cells drive inflammation, and CS and PAR2A are potential therapeutics that may mitigate the pathophysiology of IVDD in vitro.

3.
Biomaterials ; 308: 122562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583365

RESUMO

Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.


Assuntos
Vesículas Extracelulares , Terapia Genética , Degeneração do Disco Intervertebral , Animais , Vesículas Extracelulares/metabolismo , Terapia Genética/métodos , Feminino , Masculino , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Disco Intervertebral/patologia , Ratos Sprague-Dawley , Dor nas Costas/terapia , Dor nas Costas/genética , Dor Lombar/terapia
4.
Arthritis Res Ther ; 26(1): 12, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173036

RESUMO

BACKGROUND: Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS: Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS: Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS: This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/metabolismo , Cartilagem/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Condrócitos/metabolismo , Células-Tronco/metabolismo
5.
JOR Spine ; 6(3): e1270, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780832

RESUMO

Background: Intervertebral disc (IVD) degeneration is a major contributor to low back pain (LBP), yet there are no clinical therapies targeting the underlying pathology. The annulus fibrosus (AF) plays a critical role in maintaining IVD structure/function and undergoes degenerative changes such as matrix catabolism and inflammation. Thus, therapies targeting the AF are crucial to fully restore IVD function. Previously, we have shown nonviral delivery of transcription factors to push diseased nucleus pulposus cells to a healthy phenotype. As a next step in a proof-of-concept study, we report the use of Scleraxis (SCX) and Mohawk (MKX), which are critical for the development, maintenance, and regeneration of the AF and may have therapeutic potential to induce a healthy, pro-anabolic phenotype in diseased AF cells. Methods: MKX and SCX plasmids were delivered via electroporation into diseased human AF cells from autopsy specimens and patients undergoing surgery for LBP. Transfected cells were cultured over 14 days and assessed for cell morphology, viability, density, gene expression of key phenotypic, inflammatory, matrix, pain markers, and collagen accumulation. Results: AF cells demonstrated a fibroblastic phenotype posttreatment. Moreover, transfection of SCX and MKX resulted in significant upregulation of the respective genes, as well as SOX9. Transfected autopsy cells demonstrated upregulation of core extracellular matrix markers; however, this was observed to a lesser effect in surgical cells. Matrix-degrading enzymes and inflammatory cytokines were downregulated, suggesting a push toward a pro-anabolic, anti-inflammatory phenotype. Similarly, pain markers were downregulated over time in autopsy cells. At the protein level, collagen content was increased in both MKX and SCX transfected cells compared to controls. Conclusions: This exploratory study demonstrates the potential of MKX or SCX to drive reprogramming in mild to moderately degenerate AF cells from autopsy and severely degenerate AF cells from surgical patients toward a healthy phenotype and may be a potential nonviral gene therapy for LBP.

6.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513196

RESUMO

The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240-560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20-250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 µg/mL with an IC50 of 454.1 µg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.


Assuntos
Moringa oleifera , Nanopartículas , Selênio , Antioxidantes/química , Selênio/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Nanopartículas/química
7.
Front Vet Sci ; 10: 1174700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415964

RESUMO

Bacteria- or virus-infected chicken is conventionally detected by manual observation and confirmed by a laboratory test, which may lead to late detection, significant economic loss, and threaten human health. This paper reports on the development of an innovative technique to detect bacteria- or virus-infected chickens based on the optical chromaticity of the chicken comb. The chromaticity of the infected and healthy chicken comb was extracted and analyzed with International Commission on Illumination (CIE) XYZ color space. Logistic Regression, Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), and Decision Trees have been developed to detect infected chickens using the chromaticity data. Based on the X and Z chromaticity data from the chromaticity analysis, the color of the infected chicken's comb converged from red to green and yellow to blue. The development of the algorithms shows that Logistic Regression, SVM with Linear and Polynomial kernels performed the best with 95% accuracy, followed by SVM-RBF kernel, and KNN with 93% accuracy, Decision Tree with 90% accuracy, and lastly, SVM-Sigmoidal kernel with 83% accuracy. The iteration of the probability threshold parameter for Logistic Regression models has shown that the model can detect all infected chickens with 100% sensitivity and 95% accuracy at the probability threshold of 0.54. These works have shown that, despite using only the optical chromaticity of the chicken comb as the input data, the developed models (95% accuracy) have performed exceptionally well, compared to other reported results (99.469% accuracy) which utilize more sophisticated input data such as morphological and mobility features. This work has demonstrated a new feature for bacteria- or virus-infected chicken detection and contributes to the development of modern technology in agriculture applications.

8.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770982

RESUMO

Microalgae have become a popular area of research over the past few decades due to their enormous benefits to various sectors, such as pharmaceuticals, biofuels, and food and feed. Nevertheless, the benefits of microalgae cannot be fully exploited without the optimization of their upstream production. The growth of microalgae is commonly measured based on the optical density of the sample. However, the presence of debris in the culture and the optical absorption of the intercellular components affect the accuracy of this measurement. As a solution, this paper introduces the direct optical detection of glucose molecules at 940-960 nm to accurately measure the growth of microalgae. In addition, this paper also discusses the effects of the presence of glucose on the absorption of free water molecules in the culture. The potential of the optical detection of glucose as a complement to the commonly used optical density measurement at 680 nm is discussed in this paper. Lastly, a few recommendations for future works are presented to further verify the credibility of glucose detection for the accurate determination of microalgae's growth.


Assuntos
Microalgas , Biomassa , Biocombustíveis , Alimentos
9.
J Public Health Afr ; 14(11): 2430, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38162330

RESUMO

Healthy diet is an important tool to lower the risk and severity of COVID-19 infection. Low diet quality is usually caused by perceived barriers that stop people to do certain behavior. Perceived barriers can be overcome by implementing proper method such as conducting nutrition education. This study aimed to analyze the impact of nutrition education on perceived barrier to healthy diet among adults with and without covid-19 history in Padang, Indonesia. This study was a pre-experimental study using pre and post-design. This study was conducted on 70 adults with or without COVID-19 infection history, residing in Padang, Indonesia. The intervention was given in the form of nutrition education. Difference test was conducted to assess the impact of nutrition education on respondents' nutrition knowledge and perceived barriers. The majority of the respondents both with and without COVID-19 history (71.4 and 80%) had medium level of nutritional knowledge before the intervention. After the intervention, there was a significant (P<0.05) improvement on respondents' nutritional knowledge for both groups (100%). The result also showed 40% of the respondents with COVID-19 history had medium level of perceived barriers, while 28.6% respondents without COVID-19 history (65.7%) had medium level of perceived barriers before the intervention. A significant improvement (P<0.05) also showed on respondents' perceived barriers after the intervention. On both groups more 90% of the respondents only had low level of perceived barriers. The result shows that nutrition education has significant impact both on respondents' nutritional knowledge and perceived barriers.

10.
Nutrients ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36364712

RESUMO

Over the past two years, the world has faced the pandemic, COVID-19, and various changes. Several regulations and recommendations from the Ministry of Health of Indonesia have contributed to behavioral changes among Indonesian residents, especially in food consumption patterns. The change in food consumption patterns can be a positive change that formed due to the COVID-19 pandemic. This study aimed to examine whether the application of a Health Belief Model (HBM)-based nutrition education programme can be effectively used in changing the beliefs of adults with or without a COVID-19 history in supplement and nutrient intake. This study was a cross-sectional study involving 140 adults. This study placed 70 adults with/without a COVID-19 history into the intervention group. The intervention group participated in a nutrition education programme. The respondents were asked to fill out the questionnaire. The data were analyzed by independent and paired t-tests and Chi-square test. The result of this study showed no association between perceived susceptibility, severity, benefit, barrier, and self-efficacy, of nutrient and supplement intake with the history of COVID-19 among the respondents. However, most of the respondents in this study were low in their scores of perceivedness. Thus, it is still important for the government to increase nutrient and supplement intake education, especially in young adults aged below 25 years old.


Assuntos
COVID-19 , Adulto Jovem , Humanos , Adulto , COVID-19/epidemiologia , Pandemias , Estudos Transversais , Ingestão de Alimentos , Modelo de Crenças de Saúde , Nutrientes
11.
Artigo em Inglês | MEDLINE | ID: mdl-36293576

RESUMO

Since the year 2020, coronavirus disease 2019 (COVID-19) has emerged as the dominant topic of discussion in the public and research domains. Intensive research has been carried out on several aspects of COVID-19, including vaccines, its transmission mechanism, detection of COVID-19 infection, and its infection rate and factors. The awareness of the public related to the COVID-19 infection factors enables the public to adhere to the standard operating procedures, while a full elucidation on the correlation of different factors to the infection rate facilitates effective measures to minimize the risk of COVID-19 infection by policy makers and enforcers. Hence, this paper aims to provide a comprehensive and analytical review of different factors affecting the COVID-19 infection rate. Furthermore, this review analyses factors which directly and indirectly affect the COVID-19 infection risk, such as physical distance, ventilation, face masks, meteorological factor, socioeconomic factor, vaccination, host factor, SARS-CoV-2 variants, and the availability of COVID-19 testing. Critical analysis was performed for the different factors by providing quantitative and qualitative studies. Lastly, the challenges of correlating each infection risk factor to the predicted risk of COVID-19 infection are discussed, and recommendations for further research works and interventions are outlined.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Máscaras
12.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956846

RESUMO

The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 µg/mL and EC50 of 20.03 µg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 µL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.


Assuntos
Myrtaceae , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Myrtaceae/química , Óleos Voláteis/química , Staphylococcus aureus , Staphylococcus epidermidis
13.
Front Pain Res (Lausanne) ; 3: 894651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812017

RESUMO

Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.

14.
JOR Spine ; 5(4): e1235, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601369

RESUMO

Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.

15.
Sensors (Basel) ; 21(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696079

RESUMO

For most natural or naturally-derived liquid products, their color reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for color measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as color is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-colored liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for color measurement of amber-colored liquids. The pros and cons of the measurement methods, the effects of the color on customer preferences, and the international industry standards on color measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the color measurement techniques as well as recommendations for future research. This review demonstrates that the existing color measurement technique can determine the color according to the standards and color scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for color measurement of liquids and thus expedite the development of a portable device that can measure color accurately.


Assuntos
Padrões de Referência , Cor , Previsões
16.
Sci Rep ; 11(1): 4420, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627769

RESUMO

The Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors. To evaluate downstream effectors of the FA pathway, we studied the expression of 734 different micro RNAs (miRNA) using NanoString nCounter miRNA array in two FA defective lung cancer cells and matched control cells, along with two lung tumors and matched non-tumor tissue samples that were deficient in the FA pathway. Selected miRNA expression was validated with real-time PCR analysis. Among 734 different miRNAs, a cluster of microRNAs were found to be up-regulated including an important cancer related micro RNA, miR-200C. MiRNA-200C has been reported as a negative regulator of epithelial-mesenchymal transition (EMT) and inhibits cell migration and invasion by promoting the upregulation of E-cadherin through targeting ZEB1 and ZEB2 transcription factors. miRNA-200C was increased in the FA defective lung cancers as compared to controls. AmpliSeq analysis showed significant reduction in ZEB1 and ZEB2 mRNA expression. Our findings indicate the miRNA-200C potentially play a very important role in FA pathway downstream regulation.


Assuntos
Anemia de Fanconi/genética , MicroRNAs/genética , Transdução de Sinais/genética , Células A549 , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares , Regulação para Cima/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
17.
Front Bioeng Biotechnol ; 8: 598466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330428

RESUMO

Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.

18.
Curr Pharm Des ; 26(17): 2057-2071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250211

RESUMO

The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/patologia
19.
J Orthop Res ; 37(11): 2389-2400, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31286562

RESUMO

Intervertebral disc (IVD) degeneration is a major contributor to chronic low back pain and is characterized by decreases in cellularity and proteoglycan synthesis, upregulation of matrix degradation, and increases in pro-inflammatory factors with neurovascular invasion. Current treatments fail to target the underlying pathology or promote tissue repair and approaches such as viral transfection raise safety concerns due to mutagenesis and unwarranted immune responses. To avoid such concerns, nonviral transfection is a viable method of gene delivery into the host cell while bypassing the caveats of viral delivery. Brachyury is expressed in the developing notochord and is associated with an immature healthy nucleus pulposus (NP). We hypothesize that Brachyury can reprogram degenerate NP cells to a healthy pro-anabolic phenotype with increased proteoglycan content and decreased expression of catabolic, inflammatory, and neurovascular markers. NP cells obtained from human autopsy and surgical tissues were transfected with plasmids encoding for Brachyury or an empty vector control via bulk electroporation. Post transfection, cells were seeded in three-dimensional agarose constructs cultured over 4 weeks and analyzed for viability, gene expression, and proteoglycan. Results demonstrated successful transfection of both autopsy and surgical NP cells. We observed long-term Brachyury expression, significant increased expression of NP phenotypic markers FOXF1, KRT19, and chondrogenic marker SOX9 with decreases in inflammatory cytokines IL1-ß/IL6, NGF, and MMPs and significant increases in glycosaminoglycan accumulation. These results highlight nonviral transfection with developmental transcription factors, such as Brachyury, as a promising method to reprogram degenerate human disc cells toward a healthy NP phenotype. Clinical significance: This project proposes a novel translational approach for the treatment of intervertebral disc degeneration via direct reprogramming of diseased human patient-derived IVD cells to a healthy phenotype. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2389-2400, 2019.


Assuntos
Proteínas Fetais/genética , Terapia Genética/métodos , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Proteínas com Domínio T/genética , Transfecção/métodos , Adulto , Idoso , Citocinas/metabolismo , Feminino , Proteínas Fetais/metabolismo , Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Neural/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito , Proteínas com Domínio T/metabolismo , Adulto Jovem
20.
Front Cell Neurosci ; 13: 294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333416

RESUMO

Mast cells (MCs) are present in the painful degenerate human intervertebral disc (IVD) and are associated with disease pathogenesis. MCs release granules containing enzymatic and inflammatory factors in response to stimulants or allergens. The serine protease, tryptase, is unique to MCs and its activation of the G-protein coupled receptor, Protease Activated Receptor 2 (PAR2), induces inflammation and degradation in osteoarthritic cartilage. Our previously published work has demonstrated increased levels of MC marker tryptase in IVD samples from discogenic back pain patients compared to healthy control IVD samples including expression of chemotactic agents that may facilitate MC migration into the IVD. To further elucidate MCs' role in the IVD and mechanisms underlying its effects, we investigated whether (1) human IVD cells can promote MC migration, (2) MC tryptase can mediate up-regulation of inflammatory/catabolic process in human IVD cells and tissue, and (3) the potential of PAR2 antagonist to function as a therapeutic drug in in vitro human and ex vivo bovine pilot models of disease. MC migration was quantitatively assessed using conditioned media from primary human IVD cells and MC migration examined through Matrigel. Exposure to soluble IVD factors significantly enhanced MC migration, suggesting IVD cells can recruit MCs. We also demonstrated significant upregulation of MC chemokine SCF and angiogenic factor VEGFA gene expression in human IVD cells in vitro in response to recombinant human tryptase, suggesting tryptase can enhance recruitment of MCs and promotion of angiogenesis into the usually avascular IVD. Furthermore, tryptase can degrade proteoglycans in IVD tissue as demonstrated by significant increases in glycosaminoglycans released into surrounding media. This can create a catabolic microenvironment compromising structural integrity and facilitating vascular migration usually inhibited by the anti-angiogenic IVD matrix. Finally, as a "proof of concept" study, we examined the therapeutic potential of PAR2 antagonist (PAR2A) on human IVD cells and bovine organ culture IVD model. While preliminary data shows promise and points toward structural restoration of the bovine IVD including down-regulation of VEGFA, effects of PAR2 antagonist on human IVD cells differ between gender and donors suggesting that further validation is required with larger cohorts of human specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...