Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 15(1): 55, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326916

RESUMO

BACKGROUND: Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown. FINDINGS: We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weight. Cytological analysis showed that WG3 regulates grain size by affecting cell proliferation. MutMap-based gene cloning and a transgenic experiment demonstrated that WG3 encodes a GRAS protein. Moreover, we found that WG3 directly interacts with DWARF AND LOW-TILLERING (DLT), a previously reported GRAS protein, and a genetic experiment demonstrated that WG3 and DLT function in a common pathway to regulate grain size. Additionally, a brassinosteroid (BR) sensitivity test suggested that WG3 has a positive role in BR signaling in rice. Collectively, our results reveal a new genetic and molecular mechanism for the regulation of grain size in rice by the WG3-DLT complex, and highlight the important functions of the GRAS protein complex in plants. CONCLUSION: WG3 functions directly in regulating grain size and BR signaling in rice.

2.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754644

RESUMO

Light is one of the most important environmental factors that affect many aspects of plant growth, including chlorophyll (Chl) synthesis and flowering time. Here, we identified a rice mutant, yellow leaf and early flowering (ye1), and characterized the gene YE1 by using a map-based cloning method. YE1 encodes a heme oxygenase, which is localized to the chloroplasts. YE1 is expressed in various green tissues, especially in leaves, with a diurnal-rhythmic expression pattern, and its transcripts is also induced by light during leaf-greening. The mutant displays decreased Chl contents with less and disorderly thylakoid lamellar layers in chloroplasts, which reduced the photosynthesis rate. The early flowering phenotype of ye1 was not photoperiod-sensitive. Furthermore, the expression levels of Chl biosynthetic genes were downregulated in ye1 seedlings during de-etiolation responses to light. We also found that rhythmic expression patterns of genes involved in photoperiodic flowering were altered in the mutant. Based on these results, we infer that YE1 plays an important role in light-dependent Chl biogenesis as well as photoperiodic flowering pathway in rice.


Assuntos
Clorofila/biossíntese , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas , Oryza/genética , Oryza/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Evolução Molecular , Flores/genética , Mutação , Fenótipo , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...