Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732732

RESUMO

Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.

2.
Anal Chem ; 96(19): 7566-7576, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684118

RESUMO

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Assuntos
Metano , Metano/análogos & derivados , Metano/química , Humanos , Pegadas de Proteínas/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ligação Proteica , Espectrometria de Massas
3.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676063

RESUMO

In the process of the intelligent inspection of belt conveyor systems, due to problems such as its long duration, the large number of rollers, and the complex working environment, fault diagnosis by acoustic signals is easily affected by signal coupling interference, which poses a great challenge to selecting denoising methods of signal preprocessing. This paper proposes a novel wavelet threshold denoising algorithm by integrating a new biparameter and trisegment threshold function. Firstly, we elaborate on the mutual influence and optimization process of two adjustment parameters and three wavelet coefficient processing intervals in the BT-WTD (the biparameter and trisegment of wavelet threshold denoising, BT-WTD) denoising model. Subsequently, the advantages of the proposed threshold function are theoretically demonstrated. Finally, the BT-WTD algorithm is applied to denoise the simulation signals and the vibration and acoustic signals collected from the belt conveyor experimental platform. The experimental results indicate that this method's denoising effectiveness surpasses that of traditional threshold function denoising algorithms, effectively addressing the denoising preprocessing of idler roller fault signals under strong noise backgrounds while preserving useful signal features and avoiding signal distortion problems. This research lays the theoretical foundation for the non-contact intelligent fault diagnosis of future inspection robots based on acoustic signals.

4.
Biomed Opt Express ; 15(3): 1813-1814, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495684

RESUMO

The editors introduce the feature issue on "Novel Techniques in Microscopy," which was the topic of a symposium held on April 24-27, 2023, in Vancouver, BC. This symposium was part of the Optics in the Life Sciences Congress.

5.
Antib Ther ; 7(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235378

RESUMO

The innovation in recombinant protein technology has brought forth a host of challenges related to the purification of these therapeutic proteins. This article delves into the intricate landscape of developing purification processes for artificially designed therapeutic proteins. The key hurdles include controlling protein reduction, protein capture, ensuring stability, eliminating aggregates, removing host cell proteins and optimizing protein recovery. In this review, we outline the purification strategies in order to obtain products of high purity, highlighting the corresponding solutions to circumvent the unique challenges presented by recombinant therapeutic proteins, and exemplify the practical applications by case studies. Finally, a perspective towards future purification process development is provided.

6.
iScience ; 27(1): 108247, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38230262

RESUMO

Accurate optic disc (OD) segmentation has a great significance for computer-aided diagnosis of different types of eye diseases. Due to differences in image acquisition equipment and acquisition methods, the resolution, size, contrast, and clarity of images from different datasets show significant differences, resulting in poor generalization performance of deep learning networks. To solve this problem, this study proposes a multi-level segmentation network. The network includes data quality enhancement module (DQEM), coarse segmentation module (CSM), localization module (OLM), and fine segmentation stage module (FSM). In FSM, W-Net is proposed for the first time, and boundary loss is introduced in the loss function, which effectively improves the performance of OD segmentation. We generalized the model in the REFUGE test dataset, GAMMA dataset, Drishti-GS1 dataset, and IDRiD dataset, respectively. The results show that our method has the best OD segmentation performance in different datasets compared with state-of-the-art networks.

7.
Biomed Opt Express ; 15(1): 114-130, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223188

RESUMO

We report on a compact multimodal imaging system that can acquire two-photon microscopy (2PM) and three-photon microscopy (3PM) images simultaneously. With dual excitation wavelengths, multiple contrasts including two-photon-excitation-fluorescence (2PEF), second harmonic generation (SHG), and third harmonic generation (THG) are acquired simultaneously from cells, collagen fibers, and interfaces, all label-free. Challenges related to the excitation by two wavelengths and the effective separation of 2PM and 3PM signals are discussed and addressed. The data processing challenge where multiple contrasts can have significantly varying signal levels is also addressed. A kernel-based nonlinear scaling (KNS) denoising method is introduced to reduce noise from ultra-low signal images and generate high-quality multimodal images. Simultaneous 2PM and 3PM imaging is demonstrated on various tissue samples. The simultaneous acquisition speeds up the imaging process and minimizes the commonly encountered problem of motion artifacts and mechanical drift in sequential acquisition. Multimodal imaging with simultaneous 2PM and 3PM will have great potential for label-free in-vivo imaging of biological tissues.

8.
Sci Total Environ ; 918: 170325, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38278265

RESUMO

Algae plays a key role in carbon capture and utilization (CCU) as it can capture and use the atmospheric CO2 for conversion of value-added products. Concentrated CO2 is common in flue gas and provides opportunities for algae cultivation. The drawbacks are mass transfer limitation, poor CO2 dissolution, and challenges to reach optimal levels for algal growth at given flue gas levels. Bicarbonate is flexible to be used as carbon source and owns the potential to enhance the efficiency of biological carbon fixation by algae. The requirements of algae strains are more stringent. To improve the industrial scale-up of CCU, system optimization is of great importance. More novel algal strains that can grow rapidly under harsh environment and provide valuable bio-products should be developed for large-scale production. Algae-driven CCU is promising for achieving carbon-neutrality.


Assuntos
Dióxido de Carbono , Microalgas , Bicarbonatos , Carbono , Plantas , Ciclo do Carbono , Biomassa
9.
Sci China Life Sci ; 67(3): 529-542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041780

RESUMO

Irreversible eye lesions, such as glaucoma and traumatic optic neuropathy, can cause blindness; however, no effective treatments exist. The optic nerve, in particular, lacks the capacity to spontaneously regenerate, requiring the development of an effective approach for optic nerve repair, which has proven challenging. Here, we demonstrate that a combination of the small molecules 3BDO and trichostatin A (TSA)-which regulate mTOR and HDAC, respectively-packaged in thermosensitive hydrogel for 4-week-sustained release after intravitreal injection, effectively induced optic nerve regeneration in a mouse model of optic nerve crush injury. Moreover, this combination of 3BDO and TSA also protected axon projections and improved visual responses in an old mouse model (11 months old) of glaucoma. Taken together, our data provide a new, local small molecule-based treatment for the effective induction of optic nerve repair, which may represent a foundation for the development of pharmacological methods to treat irreversible eye diseases.


Assuntos
Glaucoma , Traumatismos do Nervo Óptico , Camundongos , Animais , Hidrogéis , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Glaucoma/patologia , Axônios/fisiologia , Modelos Animais de Doenças , Células Ganglionares da Retina/fisiologia , Regeneração Nervosa/fisiologia
10.
Mol Genet Genomic Med ; 11(8): e2188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488749

RESUMO

BACKGROUND: Zhu-Tokita-Takenouchi-Kim (ZTTK, OMIM 617140) syndrome is a severe multisystem developmental disorder characterized by intellectual disability, developmental delay, cortical malformations, epilepsy, visual problems, musculoskeletal abnormalities, and congenital malformations. ZTTK syndrome is caused by a heterozygous pathogenic variant of the SON gene (NM_138927) at chromosome 21q22.1. The purpose of this study was to investigate the pathogenesis of a 6-month-old Chinese child who exhibited global developmental delay, muscle weakness, malnutrition, weight loss, and strabismus, brain abnormality, immunological system abnormalities. METHODS: The little girl was tested for medical exome sequencing (MES) and mtDNA sequencing in trio. And, the mutation was validated by Sanger sequencing. RESULTS: A novel de novo frameshift variant, c.1845_1870del26 (p.G616Sfs*61), in the SON gene was found in the proband. CONCLUSION: We described a 6-month-old Chinese child with global developmental delay caused by pathogenic de novo mutation c.1845_1870del26 (p.G616Sfs*61) in the SON. Apart from a founder mutation, we reviewed the phenotypic abnormalities and genotypes in 79 individuals. The data showed that global developmental delay is accompanied by other system disorders. Our findings expanded the mutational spectrum of ZTTK syndrome and provide genetic counseling of baby with global developmental delay.


Assuntos
Deficiências do Desenvolvimento , Oftalmopatias , Deficiência Intelectual , Desnutrição , Criança , Feminino , Humanos , Lactente , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , População do Leste Asiático , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Síndrome
11.
Polymers (Basel) ; 15(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447587

RESUMO

It is a great challenge to obtain an ideal guided bone regeneration (GBR) membrane. In this study, tragacanth gum (GT) was introduced into a chitosan/nano-hydroxyapatite (CS/n-HA) system. The effects of different component ratios and strontium-doped nano-hydroxyapatite (Sr-HA) on the physical-chemical properties and degradation behavior of the CS/Sr-n-HA/GT ternary composite membrane were investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, electromechanical universal tester and in vitro soaking in simulated body fluid (SBF). The results showed that CS could be ionically crosslinked with GT through electrostatic interaction, and Sr-n-HA was loaded via hydrogen bond, which endowed the GT/CS/n-HA composite membrane with good tensile strength and hydrophilicity. In addition, the results of immersion in SBF in vitro showed that CS/n-HA/GT composite membranes had different degradation rates and good apatite deposition by investigating the changes in pH value, weight loss, water absorption ratio, SEM morphology observation and tensile strength reduction. All results revealed that the CS/Sr-n-HA/GT (6:2:2) ternary composite membrane possessed the strongest ionic crosslinking of GT and CS, which was expected to obtain more satisfactory GBR membranes, and this study will provide new applications of GT in the field of biomedical membranes.

12.
ACS Synth Biol ; 12(4): 984-992, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37000479

RESUMO

A proximity-enabled protein cross-linking strategy with additional spatiotemporal control is highly desirable. Here, we report an oxidation-induced protein cross-linking strategy involving the incorporation of a vinyl thioether group into proteins in both Escherichia coli and mammalian cells via genetic code expansion. We demonstrated that vinyl thioether can be selectively induced by exogenously added oxidant or by reactive oxygen species from the cellular environment, as well as by photocatalysts, and converted into a Michael acceptor, enabling fluorescence labeling and protein cross-linking.


Assuntos
Ligação Proteica , Proteínas , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Mamíferos/genética , Proteínas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Sulfetos/metabolismo , Oxirredução , Reagentes de Ligações Cruzadas/farmacologia , Oxidantes/farmacologia
13.
Bioeng Transl Med ; 8(2): e10414, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925715

RESUMO

Bone injury caused changes to surrounding tissues, leading to a large number of osteoclasts appeared to clear the damaged bone tissue before bone regeneration. However, overactive osteoclasts will inhibit bone formation. In this study, we prepared methacrylylated gelatin (GelMA)-based hydrogel to co-crosslink with OP3-4 peptide, a receptor activator of NF-κB ligand (RANKL) binding agent, to achieve the slow release of OP3-4 peptide to inhibit the activation of osteoclasts, thus preventing the long-term existence of osteoclasts from affecting bone regeneration, and promoting osteogenic differentiation. Moreover, CXCL9 secreted by osteoblasts will bind to endogenous VEGF and inhibit vascularization, finally hinder bone formation. Thus, anti-CXCL9 antibodies (A-CXCL9) were also loaded in the hydrogel to neutralize excess CXCL9. The hydrogel slow released of OP3-4 cyclic peptide and A-CXCL9 to simultaneously inhibiting osteoclast activation and promoting vascularization, thereby accelerating the healing of femur defect. Further analysis of osteogenic protein expression and signal pathways showed that the hydrogel may be through activating the AKT-RUNX2-ALP pathway and ultimately promote osteogenic differentiation. This dual-acting hydrogel can effectively prevent nonunion caused by low vascularization and provide long-term support for the treatment of bone injury.

14.
Polymers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772049

RESUMO

The copolymerization of carbon dioxide (CO2) with epoxides demonstrates promise as a new synthetic method for low-carbon polymer materials, such as aliphatic polycarbonate materials. In this study, a binary Schiff base cobalt system was successfully used to catalyze the copolymerization of 1,2-butylene oxide (BO) and CO2 and its terpolymerization with other epoxides such as propylene oxide (PO) and cyclohexene oxide (CHO). 1H nuclear magnetic resonance (1H NMR), diffusion-ordered spectroscopy (DOSY), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) confirmed the successful synthesis of the alternating terpolymer. In addition, the effects of the polymerization reaction conditions and copolymerization monomer composition on the polymer structure and properties were examined systematically. By regulating the epoxide feed ratio, polycarbonates with an adjustable glass transition temperature (Tg) (11.2-67.8 °C) and hydrophilicity (water contact angle: 85.2-95.2°) were prepared. Thus, this ternary polymerization method provides an effective method of modulating the surface hydrophobicity of CO2-based polymers and their biodegradation properties.

15.
Adv Healthc Mater ; 12(12): e2203027, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36652677

RESUMO

To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.


Assuntos
Anemia de Fanconi , Periósteo , Humanos , Periósteo/metabolismo , Alicerces Teciduais , Engenharia Tecidual/métodos , Biomimética , Anemia de Fanconi/metabolismo , Microtomografia por Raio-X , Regeneração Óssea/fisiologia , Osteogênese , Transdução de Sinais
16.
J Exp Bot ; 74(5): 1460-1474, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516424

RESUMO

Interdependent metabolic and transport processes of carbon (C) and nitrogen (N) regulate plant growth and development, while the regulatory pathways remain poorly defined. We previously reported that rice circadian clock N-mediated heading date-1 (Nhd1) regulates growth duration-dependent N use efficiency. Here, we report that knockout of Nhd1 in rice reduced the rate of photosynthesis and the sucrose ratio of sheaths to blades, but increased the total C to N ratio and free amino acids. Leaf RNA-seq analysis indicated that mutation of Nhd1 dramatically altered expression of the genes linked to starch and sucrose metabolism, circadian rhythm, and amino acid metabolic pathways. We identified that Nhd1 can directly activate the transcriptional expression of sucrose transporter-1 (OsSUT1). Knockout of Nhd1 suppressed OsSUT1 expression, and both nhd1 and ossut1 mutants showed similar shorter height, and lower shoot biomass and sucrose concentration in comparison with the wild type, while overexpression of OsSUT1 can restore the defective sucrose transport and partially ameliorate the reduced growth of nhd1 mutants. The Nhd1-binding site of the OsSUT1 promoter is conserved in all known rice genomes. The positively related variation of Nhd1 and OsSUT1 expression among randomly selected indica and japonica varieties suggests a common regulatory module of Nhd1-OsSUT1-mediated C and N balance in rice.


Assuntos
Relógios Circadianos , Oryza , Oryza/metabolismo , Sacarose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Bioorg Chem ; 130: 106199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370648

RESUMO

Due to the diverse H2O2 distribution in organelles, fluorescent probes were usually required to be prepared separately, which limited the convenience and practicability. Herein, we reported a flexible strategy to in-situ construct H2O2 fluorescent probes in different organelles. A tetrazine fused probe TP was developed with rapid click reaction capacity and sensitive H2O2 response. When treated with H2O2, the turn-on fluorescence was effectively quenched by the tetrazine part. Only after click reaction with dienophiles, the fluorescence resumed. In application, cells were firstly treated with triphenylphosphorus tagged norbornene (TPP-NB) to label mitochondria, which was followed by the introduction of probe TP to trigger click reaction. The in-situ constructed probe P1 served as a local H2O2 sensor. In a similar way, probe P2 was in-situ constructed in lysosomes via probe TP and morpholine tagged norbornene (MP-NB). With this on-demand modular assembling and double turn-on features, our strategy to construct fluorescent probes presented high flexibility and anti-interference performance, which was expected to inspired more applications in biological studies.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Humanos , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/metabolismo , Células HeLa , Lisossomos/metabolismo , Mitocôndrias , Norbornanos/metabolismo
19.
Org Lett ; 24(51): 9366-9369, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36541616

RESUMO

A visible-light photocatalytic regioselective [2 + 2 + 1] radical annulation reaction of alkenes, tert-butyl nitrite, and gem-dihalides has been developed. The protocol provides an efficient and practical approach to obtain isoxazolines in good yields under mild conditions. Significantly, gem-dihalides serve as C1 synthons, while cheap tert-butyl nitrite acts as an ideal "N-O" synthon.

20.
Opt Express ; 30(12): 20401-20414, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224786

RESUMO

We report a compact cavity-dumped burst-mode Nd:YAG laser master-oscillator power-amplifier system with a flat-top intensity distribution across the output-beam section. Custom-designed gain profile-controlled diode side pumping modules providing flat-top and concave gain profiles were utilized to generate a uniform beam profile and suppress thermal lensing during amplification, respectively. Bursts with an energy of 2.0 J and duration of 1.6 ms were operated at 10 Hz. Within the bursts, single pulses with an energy of 12.7 mJ and pulse width of 3.3 ns were achieved at 100 kHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...