Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Bioprospect ; 14(1): 27, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722432

RESUMO

Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, ß-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.

2.
Ultrason Sonochem ; 106: 106898, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38749103

RESUMO

Nanocellulose (CNF) has emerged as a promising alternative to synthetic petroleum-based polymers, but the conventional preparation process involves multiple tedious steps, heavily dependent on chemical input, and proves cost-inefficient. This study presented an, in situ ultrasound-assisted extraction using deep eutectic solvent (DES) based on choline chloride and oxalic acid for more facile production of CNF from raw durian husk fibers. FESEM analysis confirmed the successful extraction of web-like nanofibril structure with width size ranging from 18 to 26 nm. Chemical composition analysis and FTIR revealed the selective removal of lignin and hemicellulose from the raw fiber. As compared to post-ultrasound treatment, in situ ultrasound-assisted extraction consistently outperforms, yielding a higher CNF yield with finer fiber width and significantly reduced lignin content. Integrating this eco-friendly in situ ultrasonication-assisted one-pot extraction method with a 7.5 min interval yielded the highest CNF yield of 58.22 % with minimal lignin content. The superior delignification ability achieved through the proposed in situ ultrasound-assisted protocol surpasses the individual efficacy of DES and ultrasonication processes, neither of which yielded CNF in our experimental setup. This single-step fabrication process significantly reduces chemical usage and streamlines the production steps yielding web-structured CNF that is ideal for sustainable application in membrane and separator.

3.
Biomed Pharmacother ; 162: 114659, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068335

RESUMO

Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.


Assuntos
Limoninas , Meliaceae , Animais , Humanos , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Peixe-Zebra/metabolismo , Proteômica , Meliaceae/química
4.
Front Plant Sci ; 13: 999270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247633

RESUMO

The tropical fruit industry in Malaysia makes up a large proportion of the agriculture sector, contributing to the local economy. Due to their high sugar and water content, tropical fruits are prone to pathogenic infections, providing optimal microorganism growth conditions. As one of the largest exporters of these fruits globally, following other Southeast Asian countries such as Thailand, Indonesia and the Philippines, the quality control of exported goods is of great interest to farmers and entrepreneurs. Traditional methods of managing diseases in fruits depend on chemical pesticides, which have attracted much negative perception due to their questionable safety. Therefore, the use of natural products as organic pesticides has been considered a generally safer alternative. The extracts of aromatic plants, known as essential oils or plant extracts, have garnered much interest, especially in Asian regions, due to their historical use in traditional medicine. In addition, the presence of antimicrobial compounds further advocates the assessment of these extracts for use in crop disease prevention and control. Herein, we reviewed the current developments and understanding of the use of essential oils and plant extracts in crop disease management, mainly focusing on tropical fruits. Studies reviewed suggest that essential oils and plant extracts can be effective at preventing fungal and bacterial infections, as well as controlling crop disease progression at the pre and postharvest stages of the tropical fruit supply chain. Positive results from edible coatings and as juice preservatives formulated with essential oils and plant extracts also point towards the potential for commercial use in the industry as more chemically safe and environmentally friendly biopesticides.

5.
Ultrason Sonochem ; 90: 106176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174272

RESUMO

With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.


Assuntos
Química Verde , Ultrassom , Solventes/química , Química Verde/métodos , Microbolhas , Tecnologia
6.
Sci Rep ; 12(1): 4275, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277557

RESUMO

Rubber gloves used for protection against chemicals or hazards are generally prone to tearing or leaking after repeated use, exposing the worker to potentially hazardous agents. Self-healing technology promises increased product durability and shelf life appears to be a feasible solution to address these issues. Herein, we aimed to fabricate a novel epoxidized natural rubber-based self-healable glove (SH glove) and investigate its suitability for handling pesticides safely. In this study, breakthrough time analysis and surface morphological observation were performed to determine the SH glove's ability to withstand dangerous chemicals. The chemical resistance performance of the fabricated SH glove was compared against four different types of commercial gloves at different temperatures. Using malathion as a model pesticide, the results showed that the SH glove presented chemical resistance ability comparable to those gloves made with nitrile and NR latex at room temperature and 37 °C. The self-healing test revealed that the SH glove could be self-healed and retained its chemical resistance ability close to its pre-cut value. Our findings suggested that the developed SH glove with proven chemical resistance capability could be a new suitable safety glove for effectively handling pesticides and reducing glove waste generation.


Assuntos
Praguicidas , Borracha , Látex , Nitrilas , Permeabilidade
7.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270025

RESUMO

Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.


Assuntos
Cosmecêuticos , Envelhecimento da Pele , Dermatopatias , Ritmo Circadiano/fisiologia , Cosmecêuticos/metabolismo , Humanos , Pele/metabolismo , Dermatopatias/metabolismo
8.
Front Nutr ; 8: 752207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671634

RESUMO

The present work aimed to investigate the swelling behavior, in vitro digestion, and release of a hydrophobic bioactive compound, thymoquinone (TQ), loaded in Pickering emulsion incorporated in alginate-chitosan hydrogel beads using a simulated gastrointestinal model. In this study, oil-in-water Pickering emulsions of uniform micron droplet sizes were formulated using 20% red palm olein and 0.5% (w/v) cellulose nanocrystals-soy protein isolate (CNC/SPI) complex followed by encapsulation within beads. FT-IR was used to characterize the bonding between the alginate, chitosan, and Pickering emulsion. 2% (w/v) alginate-1% (w/v) chitosan hydrogel beads were found to be spherical with higher stability against structural deformation. The alginate-chitosan beads displayed excellent stability in simulated gastric fluid (SGF) with a low water uptake of ~19%. The hydrogel beads demonstrated a high swelling degree (85%) with a superior water uptake capacity of ~593% during intestinal digestion in simulated intestinal fluid (SIF). After exposure to SIF, the microstructure transformation was observed, causing erosion and degradation of alginate/chitosan wall materials. The release profile of TQ up to 83% was achieved in intestinal digestion, and the release behavior was dominated by diffusion via the bead swelling process. These results provided useful insight into the design of food-grade colloidal delivery systems using protein-polysaccharide complex-stabilized Pickering emulsions incorporated in alginate-chitosan hydrogel beads.

9.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071337

RESUMO

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Assuntos
Antibacterianos/química , Arecaceae/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Microscopia Eletrônica , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Tamanho da Partícula , Borracha/química , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
10.
Carbohydr Res ; 504: 108336, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33964507

RESUMO

The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.


Assuntos
Celulose , Emulsões , Nanoconjugados , Proteínas de Soja
11.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916053

RESUMO

In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.


Assuntos
Meliaceae/química , Extratos Vegetais/farmacologia , Sementes/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromatografia Líquida , Cosméticos , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Espectrometria de Massas , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Proteômica/métodos
12.
Polymers (Basel) ; 13(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673391

RESUMO

Research and development of nanocellulose and nanocellulose-reinforced composite materials have garnered substantial interest in recent years. This is greatly attributed to its unique functionalities and properties, such as being renewable, sustainable, possessing high mechanical strengths, having low weight and cost. This review aims to highlight recent developments in incorporating nanocellulose into rubber matrices as a reinforcing filler material. It encompasses an introduction to natural and synthetic rubbers as a commodity at large and conventional fillers used today in rubber processing, such as carbon black and silica. Subsequently, different types of nanocellulose would be addressed, including its common sources, dimensions, and mechanical properties, followed by recent isolation techniques of nanocellulose from its resource and application in rubber reinforcement. The review also gathers recent studies and qualitative findings on the incorporation of a myriad of nanocellulose variants into various types of rubber matrices with the main goal of enhancing its mechanical integrity and potentially phasing out conventional rubber fillers. The mechanism of reinforcement and mechanical behaviors of these nanocomposites are highlighted. This article concludes with potential industrial applications of nanocellulose-reinforced rubber composites and the way forward with this technology.

13.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672331

RESUMO

While the economy is rapidly expanding in most emerging countries, issues coupled with a higher population has created foreseeable tension among food, water, and energy. It is crucial for more sustainable valorization of resources, for instance, nanocellulose, to address the core challenges in environmental sustainability. As the complexity of the system evolved, the timescale of project development has increased exponentially. However, research on the design and operation of integrated nanomaterials, along with energy supply, monitoring, and control infrastructure, has seriously lagged. The development cost of new materials can be significantly reduced by utilizing molecular simulation technology in the design of nanostructured materials. To realize its potential, nanocellulose, an amphiphilic biopolymer with the presence of rich -OH and -CH structural groups, was investigated via molecular dynamics simulation to reveal its full potential as Pickering emulsion stabilizer at the molecular level. This work has successfully quantified the Pickering stabilization mechanism profiles by nanocellulose, and the phenomenon could be visualized in three stages, namely the initial homogenous phase, rapid formation of micelles and coalescence, and lastly the thermodynamic equilibrium of the system. It was also observed that the high bead order was always coupled with a high volume of phase separation activities, through a coarse-grained model within 20,000 time steps. The outcome of this work would be helpful to provide an important perspective for the future design and development of nanocellulose-based emulsion products, which cater for food, cosmeceutical, and pharmaceutical industries.

14.
Plants (Basel) ; 10(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530608

RESUMO

Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.

15.
Front Plant Sci ; 12: 791205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003181

RESUMO

Glutathione (GSH; γ-glutamyl-cysteinyl-glycine), a low-molecular-weight thiol, is the most pivotal metabolite involved in the antioxidative defense system of plants. The modulation of GSH on the plant in response to environmental stresses could be illustrated through key pathways such as reactive oxygen species (ROS) scavenging and signaling, methylglyoxal (MG) detoxification and signaling, upregulation of gene expression for antioxidant enzymes, and metal chelation and xenobiotic detoxification. However, under extreme stresses, the biosynthesis of GSH may get inhibited, causing an excess accumulation of ROS that induces oxidative damage on plants. Hence, this gives rise to the idea of exploring the use of exogenous GSH in mitigating various abiotic stresses. Extensive studies conducted borne positive results in plant growth with the integration of exogenous GSH. The same is being observed in terms of crop yield index and correlated intrinsic properties. Though, the improvement in plant growth and yield contributed by exogenous GSH is limited and subjected to the glutathione pool [GSH/GSSG; the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)] homeostasis. Therefore, recent studies focused on the sequenced application of GSH was performed in order to complement the existing limitation. Along with various innovative approaches in combinatory use with different bioactive compounds (proline, citric acid, ascorbic acid, melatonin), biostimulants (putrescine, Moringa leaf extract, selenium, humic acid), and microorganisms (cyanobacteria) have resulted in significant improvements when compared to the individual application of GSH. In this review, we reinforced our understanding of biosynthesis, metabolism and consolidated different roles of exogenous GSH in response to environmental stresses. Strategy was also taken by focusing on the recent progress of research in this niche area by covering on its individualized and combinatory applications of GSH prominently in response to the abiotic stresses. In short, the review provides a holistic overview of GSH and may shed light on future studies and its uses.

16.
Oxid Med Cell Longev ; 2020: 1904178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855763

RESUMO

Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.


Assuntos
Células Epiteliais/efeitos da radiação , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Células Epiteliais/patologia , Humanos , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/patologia
17.
Front Pharmacol ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372949

RESUMO

Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-ß/BMP, Wnt/ß-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.

18.
Ultrason Sonochem ; 55: 348-358, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30871878

RESUMO

The dynamics of droplet breakup during emulsification is a complicated process due to the interplay between multiple physico-chemical and hydrodynamic factors, especially in an energy-intensive ultrasound-assisted emulsification process. In this work, by mapping the physical processing parameters of ultrasound emulsification into a reduced domain that is governed by the power density and the initial average droplet diameter, a dimensionless parameter that resembles the dynamic breakup potential (η) was established via dimensional analysis. In addition to shedding important insights into the emulsification process, η further facilitates the establishment of a transient scaling relationship that is a function of the characteristic value (a) of the emulsion system. Experimental case study on a cellulose nanocrystals (CNC)-based olein-in-water emulsion system prepared via ultrasound cavitation confirmed the validity of the scaling relationship and sub-universal self-similarity was observed. Using the proposed model, good predictions of the transient of droplet size evolution were attained where the value of η, i.e. the proportionality constant, can be conveniently computed using data from a single time point. Application on other emulsion systems further suggested that the value of a possibly indicates the relative minimum size limit of a particular fluids-emulsifier system. Our approach is general, which encourages widespread adoption for emulsification related studies.

19.
Ultrason Sonochem ; 54: 121-128, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30827901

RESUMO

The current work proposed an alternative ultrasound (US) technology, namely the high-intensity ultrasonic tubular reactor (HUTR) for preparing Pickering emulsions. Using the non-toxic and environmentally friendly cellulose nanocrystal (CNC) as a solid stabilizer, Pickering emulsions were produced using the HUTR and the results showed that Pickering emulsions as small as 1.5 µm can be produced using HUTR at the US power and sonication time of 300 W and 15 min respectively. Additionally, the sizes of Pickering emulsion obtained are found to remain the same upon 30 days of storage. The performance of HUTR in emulsion preparation is compared to conventional US horn system at the same US power. It was observed that the use of HUTR allowed generation of Pickering emulsion that is significantly smaller (around 7.40 µm) and with better droplet size distribution (Coefficient of variation, CV = 31%) as compared to those prepared with US horn method (12.75 µm, CV = 36%). This is owing to the better distribution of cavitation activity in the treatment chamber of HUTR as compared to those in the horn, according to the sonochemiluminescence (SCL) study. From the 30-days storage stability analysis, the CNC-PE prepared using HUTR was found to more stable against droplet coalescence in comparison to those prepared using US horn. Our findings suggested that the HUTR possessed superior Pickering emulsification capacity when compared to conventional US horn. Further work will be necessary to evaluate the feasibility of such intensifying tubular reactor technology for larger scale emulsification and other process intensification applications.

20.
Int J Biol Macromol ; 127: 76-84, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639596

RESUMO

Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 µm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ±â€¯5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 µg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.


Assuntos
Celulose , Neoplasias do Colo , Curcumina , Portadores de Fármacos , Nanopartículas de Magnetita , Nanopartículas , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Emulsões , Células HCT116 , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...