Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109533, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591006

RESUMO

Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and ß-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.

2.
Antiviral Res ; 222: 105797, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185222

RESUMO

RNA viral infections seriously endanger human health. Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) suppresses innate immunity against influenza A virus, and pharmacological inhibition of SHP2 provokes hepatic innate immunity. SHP2 binds and catalyzes tyrosyl dephosphorylation of protein zero-related (PZR), but the regulatory effect of PZR on innate immune response to viral infection is unclear. In this study, the transcription and protein level of PZR in host cells were found to be decreased with RNA viral infection, and high level of PZR was uncovered to inhibit interferon (IFN) signaling mediated by RIG-I and MDA5. Through localizing in mitochondria, PZR targeted and interacted with MAVS (also known as IPS-1/VISA/Cardif), suppressing the aggregation and activation of MAVS. Specifically, Y263 residue in ITIM is critical for PZR to exert immunosuppression under RNA viral infection. Moreover, the recruited SHP2 by PZR that modified with tyrosine phosphorylation under RNA viral infection might inhibit phosphorylation activation of MAVS. In conclusion, PZR and SHP2 suppress innate immune response to RNA viral infection through inhibiting MAVS activation. This study reveals the regulatory mechanism of PZR-SHP2-MAVS signal axis on IFN signaling mediated by RIG-I and MDA5, which may provide new sight for developing antiviral drugs.


Assuntos
Infecções por Vírus de RNA , Vírus de RNA , Viroses , Humanos , Transdução de Sinais , Proteína DEAD-box 58 , Imunidade Inata , Interferons , RNA
3.
Microbiol Spectr ; 12(1): e0274523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018998

RESUMO

IMPORTANCE: Approximately 257 million people worldwide have been infected with hepatitis B virus (HBV), and HBV infection can cause chronic hepatitis, cirrhosis, and even liver cancer. The lack of suitable and effective infection models has greatly limited research in HBV-related fields for a long time, and it is still not possible to discover a method to completely and effectively remove the HBV genome. We have constructed a hepatocellular carcinoma cell line, HLCZ01, that can support the complete life cycle of HBV. This model can mimic the long-term stable infection of HBV in the natural state and can replace primary human hepatocytes for the development of human liver chimeric mice. This model will be a powerful tool for research in the field of HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Camundongos , Animais , Replicação Viral , Vírus da Hepatite B/genética , Modelos Animais de Doenças , Técnicas de Cultura de Células
4.
Cell Death Dis ; 14(12): 793, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049405

RESUMO

Pyroptosis, a mode of inflammatory cell death, has recently gained significant attention. However, the underlying mechanism remains poorly understood. HGS-ETR1/2 is a humanized monoclonal antibody that can bind to DR4/5 on the cell membrane and induce cell apoptosis by activating the death receptor signalling pathway. In this study, by using morphological observation, fluorescence double staining, LDH release and immunoblot detection, we confirmed for the first time that HGS-ETR1/2 can induce GSDME-mediated pyroptosis in hepatocellular carcinoma cells. Our study found that both inhibition of the AKT signalling pathway and silencing of CPA4 promote pyroptosis, while the overexpression of CPA4 inhibits it. Furthermore, we identified a positive regulatory feedback loop is formed between CPA4 and AKT phosphorylation. Specifically, CPA4 modulates AKT phosphorylation by regulating the expression of the AKT phosphatase PP2A, while inhibition of the AKT signalling pathway leads to a decreased transcription and translation levels of CPA4. Our study reveals a novel mechanism of pyroptosis induced by HGS-ETR1/2, which may provide a crucial foundation for future investigations into cancer immunotherapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Piroptose , Transdução de Sinais , Carboxipeptidases , Linhagem Celular Tumoral , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Microbiol Spectr ; : e0164123, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623314

RESUMO

KDM7A (lysine demethylase 7A, also known as JHDM1D) is a histone demethylase, it is mainly involved in the intracellular post-translational modifications process. Recently, it has been proved that the histone demethylase members can regulate the replication of hepatitis B virus (HBV) and the expression of key molecules in the Janus-activated kinase-signal transducer and activator of the transcription (JAK/STAT) signaling pathway by chromatin modifying mechanisms. In our study, we identify novel roles of KDM7A in HBV replication and immune microenvironment through two subjects: pathogen and host. On the one hand, KDM7A is highly expressed in HBV-infected cells and promotes HBV replication in vitro and in vivo. Moreover, KDM7A interacts with HBV covalently closed circular DNA and augments the activity of the HBV core promoter. On the other hand, KDM7A can remodel the immune microenvironment. It inhibits the expression of interferon-stimulated genes (ISGs) through the IFN-γ/JAK2/STAT1 signaling pathway in both hepatocytes and macrophages. Further study shows that KDM7A interacts with JAK2 and STAT1 and affects their methylation. In general, we demonstrate the dual functions of KDM7A in HBV replication and immune microenvironment, and then we propose a new therapeutic target for HBV infection and immunotherapy. IMPORTANCE Histone lysine demethylase KDM7A can interact with covalently closed circular DNA and promote the replication of hepatitis B virus (HBV). The IFN-γ/JAK2/STAT1 signaling pathway in macrophages and hepatocytes is also downregulated by KDM7A. This study provides new insights into the mechanism of HBV infection and the remodeling of the immune microenvironment.

6.
PLoS Pathog ; 19(6): e1011443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327222

RESUMO

The host always employs various ways to defend against viral infection and spread. However, viruses have evolved their own effective strategies, such as inhibition of RNA translation of the antiviral effectors, to destroy the host's defense barriers. Protein synthesis, commonly controlled by the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), is a basic cellular biological process among all species. In response to viral infection, in addition to inducing the transcription of antiviral cytokines by innate immunity, infected cells also inhibit the RNA translation of antiviral factors by activating the protein kinase R (PKR)-eIF2α signaling pathway. Regulation of innate immunity has been well studied; however, regulation of the PKR-eIF2α signaling pathway remains unclear. In this study, we found that the E3 ligase TRIM21 negatively regulates the PKR-eIF2α signaling pathway. Mechanistically, TRIM21 interacts with the PKR phosphatase PP1α and promotes K6-linked polyubiquitination of PP1α. Ubiquitinated PP1α augments its interaction with PKR, causing PKR dephosphorylation and subsequent translational inhibition release. Furthermore, TRIM21 can constitutively restrict viral infection by reversing PKR-dependent translational inhibition of various previously known and unknown antiviral factors. Our study highlights a previously undiscovered role of TRIM21 in regulating translation, which will provide new insights into the host antiviral response and novel targets for the treatment of translation-associated diseases in the clinic.


Assuntos
RNA , Viroses , Humanos , RNA/metabolismo , eIF-2 Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Antivirais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Replicação Viral
7.
Hepatology ; 78(4): 1182-1199, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013405

RESUMO

BACKGROUND AND AIMS: Overnutrition-induced activation of mammalian target of rapamycin (mTOR) dysregulates intracellular lipid metabolism and contributes to hepatic lipid deposition. Apolipoprotein J (ApoJ) is a molecular chaperone and participates in pathogen-induced and nutrient-induced lipid accumulation. This study investigates the mechanism of ApoJ-regulated ubiquitin-proteasomal degradation of mTOR, and a proof-of-concept ApoJ antagonist peptide is proposed to relieve hepatic steatosis. APPROACH AND RESULTS: By using omics approaches, upregulation of ApoJ was found in high-fat medium-fed hepatocytes and livers of patients with NAFLD. Hepatic ApoJ level associated with the levels of mTOR and protein markers of autophagy and correlated positively with lipid contents in the liver of mice. Functionally, nonsecreted intracellular ApoJ bound to mTOR kinase domain and prevented mTOR ubiquitination by interfering FBW7 ubiquitin ligase interaction through its R324 residue. In vitro and in vivo gain-of-function or loss-of-function analysis further demonstrated that targeting ApoJ promotes proteasomal degradation of mTOR, restores lipophagy and lysosomal activity, thus prevents hepatic lipid deposition. Moreover, an antagonist peptide with a dissociation constant (Kd) of 2.54 µM interacted with stress-induced ApoJ and improved hepatic pathology, serum lipid and glucose homeostasis, and insulin sensitivity in mice with NAFLD or type II diabetes mellitus. CONCLUSIONS: ApoJ antagonist peptide might be a potential therapeutic against lipid-associated metabolic disorders through restoring mTOR and FBW7 interaction and facilitating ubiquitin-proteasomal degradation of mTOR.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Clusterina/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirolimo , Fígado/patologia , Serina-Treonina Quinases TOR/metabolismo , Metabolismo dos Lipídeos/fisiologia , Ubiquitinas/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
8.
Nat Commun ; 13(1): 7001, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385095

RESUMO

An acute inflammatory response needs to be properly regulated to promote the elimination of pathogens and prevent the risk of tumorigenesis, but the relevant regulatory mechanism has not been fully elucidated. Here, we report that Ras guanine nucleotide-releasing protein 1 (RasGRP1) is a bifunctional regulator that promotes acute inflammation and inhibits inflammation-associated cancer. At the mRNA level, Rasgrp1 activates the inflammatory response by functioning as a competing endogenous RNA to specifically promote IL-6 expression by sponging let-7a. In vivo overexpression of the Rasgrp1 3' untranslated region enhances lipopolysaccharide-induced systemic inflammation and dextran sulphate sodium-induced colitis in Il6+/+ mice but not in Il6-/- mice. At the protein level, RasGRP1 overexpression significantly inhibits the tumour-promoting effect of IL-6 in hepatocellular carcinoma progenitor cell-like spheroids. Examination of the EGFR signalling pathway shows that RasGRP1 inhibits inflammation-associated cancer cell growth by disrupting the EGFR-SOS1-Ras-AKT signalling pathway. Tumour patients with high RasGRP1 expression have better clinical outcomes than those with low RasGRP1 expression. Considering that acute inflammation rarely leads to tumorigenesis, this study suggests that RasGRP1 may be an important bifunctional regulator of the acute inflammatory response and tumour growth.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Interleucina-6 , Camundongos , Animais , Interleucina-6/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transformação Celular Neoplásica/genética , Inflamação/genética , Sinapsinas , Receptores ErbB
9.
J Immunol ; 209(10): 1987-1998, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426955

RESUMO

Pyroptosis is a form of regulated cell death mediated by the gasdermin protein family. During virus infection, cell pyroptosis restricts viral replication. The mechanisms of the tripartite motif (TRIM) protein family and IFN-stimulated genes (ISGs) against viruses have been studied. The role of TRIMs and ISGs in pyroptosis remains unclear. In this study, we show that TRIM21 interacts with ISG12a in viral infection and facilitates its translocation into the mitochondria by promoting its ubiquitination, thereby causing caspase 3 activation. Gasdermin E (GSDME) is specifically cleaved by caspase 3 upon viral infection, releasing the GSDME N-terminal domain, perforating the cell membrane, and causing cell pyroptosis. Our study uncovers a new mechanism of TRIM21 and ISG12a in regulating virus-induced cell pyroptosis.


Assuntos
Piroptose , Vírus , Piroptose/fisiologia , Caspase 3/metabolismo , Ubiquitinação , Morte Celular , Proteínas com Motivo Tripartido/metabolismo
10.
Cell Rep ; 40(7): 111215, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977519

RESUMO

Interferons (IFNs) are essential in antiviral defense, antitumor effects, and immunoregulatory activities. Although methionine oxidation is associated with various physiological and pathophysiological processes in plants, animals, and humans, its role in immunity remains unclear. We find that the redox cycling of signal transducer and activator of transcription 2 (STAT2) is an intrinsic cellular biological process, and that impairment of the redox status contributes to STAT2 methionine oxidation, inhibiting its activation. IFN protects STAT2 from methionine oxidation through the recruitment of methionine sulfoxide reductase MSRB2, whose enzymatic activity is enhanced by N-acetyltransferase 9 (NAT9), a chaperone of STAT2 defined in this study, upon IFN treatment. Consequently, loss of Nat9 renders mice more susceptible to viral infection. Our study highlights the key function of methionine oxidation in immunity, which provides evidence for the decline of immune function by aging and may provide insights into the clinical applications of IFN in immune-related diseases.


Assuntos
Imunidade Inata , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Animais , Homeostase , Humanos , Metionina , Camundongos , Oxirredução , Fator de Transcrição STAT1/metabolismo
11.
J Virol ; 96(7): e0000122, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35254105

RESUMO

The induction of interferons (IFNs) plays an important role in the elimination of invading pathogens. Heat shock binding protein 21 (HBP21), first known as a molecular chaperone of HSP70, is involved in tumor development. Heat shock binding proteins have been shown to regulate diverse biological processes, such as cell cycle, kinetochore localization, transcription, and cilium formation. Their role in antimicrobial immunity remains unknown. Here, we found that HBP21 drives a positive feedback loop to promote IRF3-mediated IFN production triggered by viral infection. HBP21 deficiency significantly impaired the virus-induced production of IFN and resulted in greater susceptibility to viral infection both in vitro and in vivo. Mechanistically, HBP21 interacted with IRF3 and promoted the formation of a TBK1-IRF3 complex. Moreover, HBP21 abolished the interaction between PP2A and IRF3 to repress the dephosphorylation of IRF3. Analysis of HBP21 protein structure further confirmed that HBP21 promotes the activation of IRF3 by depressing the dephosphorylation of IRF3 by PP2A. Further study demonstrated that virus-induced phosphorylation of Ser85 and Ser153 of HBP21 itself is important for the phosphorylation and dimerization of IRF3. Our study identifies HBP21 as a new positive regulator of innate antiviral response, which adds novel insight into activation of IRF3 controlled by multiple networks that specify behavior of tumors and immunity. IMPORTANCE The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied. HBP21 as a molecular chaperone is critical for tumor development. Tumor is related to immunity. Whether HBP21 regulates immunity remains unknown. Here, we found that HBP21 promotes innate immunity response by dual regulation of IRF3. HBP21 interacts with IRF3 and promotes the formation of a TBK1-IRF3 complex. Moreover, HBP21 disturbs the interaction between PP2A and IRF3 to depress the dephosphorylation of IRF3. Analysis of HBP21 protein structure confirms that HBP21 promotes the activation of IRF3 by blocking the dephosphorylation of IRF3 by PP2A. Interestingly, virus-induced Ser85 and Ser153 phosphorylation of HBP21 is important for IRF3 activation. Our findings add to the known novel immunological functions of molecular chaperones and provide new insights into the regulation of innate immunity.


Assuntos
Imunidade Inata , Chaperonas Moleculares , Viroses , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação , Viroses/imunologia
13.
Cell Mol Immunol ; 17(11): 1163-1179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32963356

RESUMO

The ability to harness innate immunity is a promising solution for improving cancer immunotherapy. Interferon (IFN) induces expression of IFN-stimulated genes (ISGs) by activating the JAK-STAT signaling pathway to promote innate immunity and inhibit malignant tumor growth, but the functions and mechanisms of most ISGs in cancer regulation are unknown. As an innate immune effector, ISG12a promotes the innate immune response to viral infection. In this study, ISG12a was found to be expressed at low levels in gastrointestinal cancer, represented by hepatocellular cancer (HCC) and gastric cancer (GC), and it identified as a tumor suppressor that affects clinical prognosis. ISG12a silencing accelerated the malignant transformation and epithelial-mesenchymal transition of cancer cells. Mechanistically, ISG12a promoted ß-catenin proteasomal degradation by inhibiting the degradation of ubiquitinated Axin, thereby suppressing the canonical Wnt/ß-catenin signaling pathway. Notably, ß-catenin was identified as a transcription factor for PD-L1. Inhibition of Wnt/ß-catenin signaling by ISG12a suppressed expression of the immune checkpoint PD-L1, rendering cancer cells sensitive to NK cell-mediated killing. This study reveals a mechanism underlying the anticancer effects of IFN. Some ISGs, as represented by ISG12a, may be useful in cancer therapy and prevention. The identified interrelations among innate immunity, Wnt/ß-catenin signaling, and cancer immunity may provide new insight into strategies that will improve the efficiency of immunotherapy.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Via de Sinalização Wnt , Animais , Proteína Axina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Neoplasias/patologia , Fenótipo , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Transcrição Gênica , beta Catenina/metabolismo
14.
Nat Immunol ; 21(3): 355, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034311

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899107

RESUMO

Emerging evidence indicates that long noncoding RNAs (lncRNAs) regulate various biological processes, especially innate and adaptive immunity. However, the relationship between lncRNAs and the interferon (IFN) pathway remains largely unknown. Here, we report that lncRNA ITPRIP-1 (lncITPRIP-1) is involved in viral infection and plays a crucial role in the virus-triggered IFN signaling pathway through the targeting of melanoma differentiation-associated gene 5 (MDA5). LncITPRIP-1 can be induced by viral infection, which is not entirely dependent on the IFN signal. Besides, there is no coding potential found in the lncITPRIP-1 transcript. LncITPRIP-1 binds to the C terminus of MDA5, and it possesses the ability to boost the oligomerization of both the full length and the 2 caspase activation and recruitment domains of MDA5 in a K63-linked polyubiquitination-independent manner. Amazingly, we also found that MDA5 can suppress hepatitis C virus (HCV) replication independently of IFN signaling through its C-terminal-deficient domain bound to viral RNA, in which lncITPRIP-1 plays a role as an assistant. In addition, the expression of lncITPRIP-1 is highly consistent with MDA5 expression, indicating that lncITPRIP-1 may function as a cofactor of MDA5. All the data suggest that lncITPRIP-1 enhances the innate immune response to viral infection through the promotion of oligomerization and activation of MDA5. Our study discovers the first lncRNA ITPRIP-1 involved in MDA5 activation.IMPORTANCE Hepatitis C virus infection is a global health issue, and there is still no available vaccine, which makes it urgent to reveal the underlying mechanisms of HCV and host factors. Although RIG-I has been recognized as the leading cytoplasmic sensor against HCV for a long time, recent findings that MDA5 regulates the IFN response to HCV have emerged. Our work validates the significant role of MDA5 in IFN signaling and HCV infection and proposes the first lncRNA inhibiting HCV replication by promoting the activation of MDA5 and mediating the association between MDA5 and HCV RNA, the study of which may shed light on the MDA5 function and treatment for hepatitis C patients. Our suggested model of how lncITPRIP-1 orchestrates signal transduction for IFN production illustrates the essential role of lncRNAs in virus elimination.


Assuntos
Imunidade Inata/fisiologia , Helicase IFIH1 Induzida por Interferon/genética , Interferons/imunologia , Proteínas de Membrana/fisiologia , RNA Longo não Codificante/fisiologia , Transdução de Sinais/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon/fisiologia , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , RNA Viral/genética , Transdução de Sinais/genética
16.
Sci Signal ; 10(460)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049762

RESUMO

Various pattern recognition receptors (PRRs) are activated in response to viral infection to stimulate the production of type I interferons (IFNs). However, central to the responses of all of these receptors is their activation of the kinase TBK1, which stimulates transcription by IFN regulatory factor 3 (IRF3). We investigated the mechanism by which the kinase activity of TBK1 is stimulated in response to viral infection. We found that the tyrosine kinase Src promoted the phosphorylation of TBK1 on Tyr179 upon viral infection of RAW264.7 macrophages. Mutation of Tyr179 to alanine resulted in impaired autophosphorylation of TBK1 at Ser172, which is required for TBK1 activation. The TBK1 Y179A mutant failed to rescue type I IFN production by virally infected RAW264.7 macrophages deficient in TBK1. Pharmacological inhibition of Src with AZD0530 and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of Src demonstrated that Src was critical for activating the TBK1-IRF3 pathway and stimulating type I IFN production. However, Src did not directly bind to recombinant TBK1 in vitro but instead bound to the proline-X-X-proline motifs within key PRR adaptor proteins, such as TRIF, MAVS, and STING, which formed complexes with TBK1 after PRR engagement. Together, our data suggest that Src is the major tyrosine kinase that primes TBK1 for autophosphorylation and activation, thus providing mechanistic insights into the regulation of TBK1 activity by various PRRs as part of the innate antiviral response.


Assuntos
Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Técnicas de Inativação de Genes , Células HEK293 , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Homologia de Sequência de Aminoácidos , Vírus da Estomatite Vesicular Indiana/fisiologia , Quinases da Família src/genética
17.
Cell Mol Immunol ; 14(2): 180-191, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26277896

RESUMO

Despite the expanding knowledge on feedback regulation of Toll-like receptor (TLR) signaling, the feedforward regulation of TLR signaling for the proper innate response to invading microbes is not fully understood. Here, we report that extracellular calcium can coordinate the activation of the small GTPases Ras and Ras-proximate-1 (Rap1) upon TLR stimulation which favors activation of macrophages through a feedforward mechanism. We show that different doses of TLR agonists can trigger different levels of cytokine production, which can be potentiated by extracellular calcium but are impaired by the chelating reagent ethylene glycol tetraacetic acid (EGTA) or by knockdown of stromal interaction molecule 1 (STIM1). Upon TLR engagement, GTP-bound Ras levels are increased and GTP-bound Rap1 is decreased, which can be reversed by EGTA-mediated removal of extracellular calcium. Furthermore, we demonstrate that Rap1 knockdown rescues the inhibitory effects of EGTA on the TLR-triggered innate response. Examination of the TLR signaling pathway reveals that extracellular calcium may regulate the TLR response via feedforward activation of the extracellular signal-regulated kinase signaling pathway. Our data suggest that an influx of extracellular calcium, mediated by STIM1-operated calcium channels, may transmit the information about the intensity of extracellular TLR stimuli to initiate innate responses at an appropriate level. Our study may provide mechanistic insight into the feedforward regulation of the TLR-triggered innate immune response.


Assuntos
Cálcio/farmacologia , Espaço Extracelular/química , Imunidade Inata/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Animais , Técnicas de Silenciamento de Genes , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/citologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Molécula 1 de Interação Estromal/metabolismo
18.
Elife ; 52016 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063938

RESUMO

Protein ubiquitination regulated by ubiquitin ligases plays important roles in innate immunity. However, key regulators of ubiquitination during innate response and roles of new types of ubiquitination (apart from Lys48- and Lys63-linkage) in control of innate signaling have not been clearly understood. Here we report that F-box only protein Fbxo21, a functionally unknown component of SCF (Skp1-Cul1-F-box protein) complex, facilitates Lys29-linkage and activation of ASK1 (apoptosis signal-regulating kinase 1), and promotes type I interferon production upon viral infection. Fbxo21 deficiency in mice cells impairs virus-induced Lys29-linkage and activation of ASK1, attenuates c-Jun N-terminal kinase (JNK) and p38 signaling pathway, and decreases the production of proinflammatory cytokines and type I interferon, resulting in reduced antiviral innate response and enhanced virus replication. Therefore Fbxo21 is required for ASK1 activation via Lys29-linkage of ASK1 during antiviral innate response, providing mechanistic insights into non-proteolytic roles of SCF complex in innate immune response.


Assuntos
Proteínas Culina/imunologia , Proteínas F-Box/imunologia , Herpes Simples/imunologia , Imunidade Inata , MAP Quinase Quinase Quinase 5/imunologia , Proteínas Quinases Associadas a Fase S/imunologia , Estomatite Vesicular/imunologia , Animais , Linhagem Celular , Proteínas Culina/genética , Modelos Animais de Doenças , Proteínas F-Box/genética , Regulação da Expressão Gênica , Células HEK293 , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , MAP Quinase Quinase Quinase 5/genética , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Associadas a Fase S/genética , Transdução de Sinais , Estomatite Vesicular/genética , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Replicação Viral/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
19.
Nat Immunol ; 16(12): 1253-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390156

RESUMO

The key molecular mechanisms that control signaling via T cell antigen receptors (TCRs) remain to be fully elucidated. Here we found that Nrdp1, a ring finger-type E3 ligase, mediated Lys33 (K33)-linked polyubiquitination of the signaling kinase Zap70 and promoted the dephosphorylation of Zap70 by the acidic phosphatase-like proteins Sts1 and Sts2 and thereby terminated early TCR signaling in CD8(+) T cells. Nrdp1 deficiency significantly promoted the activation of naive CD8(+) T cells but not that of naive CD4(+) T cells after engagement of the TCR. Nrdp1 interacted with Zap70 and with Sts1 and Sts2 and connected K33 linkage of Zap70 to Sts1- and Sts2-mediated dephosphorylation. Our study suggests that Nrdp1 terminates early TCR signaling by inactivating Zap70 and provides new mechanistic insights into the non-proteolytic regulation of TCR signaling by E3 ligases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/imunologia , Ativação Linfocitária/imunologia , Lisina/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Linfocitária/genética , Lisina/genética , Lisina/metabolismo , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação/imunologia , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Ligação Proteica/imunologia , Interferência de RNA , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Ubiquitina-Proteína Ligases , Ubiquitinação/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
20.
Nat Commun ; 5: 4657, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25118589

RESUMO

Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Inflamação/fisiopatologia , Macrófagos/fisiologia , Receptores Toll-Like/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Fatores ras de Troca de Nucleotídeo Guanina/fisiologia , Animais , Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-6/fisiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Fatores ras de Troca de Nucleotídeo Guanina/deficiência , Fatores ras de Troca de Nucleotídeo Guanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...