Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1424064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087075

RESUMO

Introduction: Apolipoprotein E (apoE) acts as a binding molecule for both the low-density lipoprotein receptor and the lipoprotein receptor-related protein and this function is essential for facilitating the hepatocyte uptake of lipoproteins containing apoB. The absence of apoE leads to increased atherogenicity in both humans and mice, although the precise molecular mechanisms remain incompletely understood. Objectives: This study aimed to investigate the susceptibility of apoE knockout (KO) rabbits, in comparison with wild-type (WT) rabbits, to diet-induced hyperlipidemia and atherosclerosis. Methods: ApoE KO rabbits and WT rabbits were fed a diet containing 0.3% cholesterol for 16 weeks. Plasma lipid levels, lipoproteins, and apolipoproteins were analyzed. Atherosclerosis was evaluated at the endpoint of experiments. In addition, we evaluated the oxidizability of those lipoproteins containing apoB to investigate the possible mechanisms of atherosclerosis. Results: Male apoE KO rabbits showed significantly elevated levels of total cholesterol and triglycerides compared to WT rabbits, while female apoE KO rabbits displayed similar high total cholesterol levels, albeit with significantly higher triglycerides levels than WT controls. Notably, both male (2.1-fold increase) and female (1.6-fold increase) apoE KO rabbits exhibited a significantly augmented aortic lesion area compared to WT controls. Pathological examination showed that the increased intimal lesions in apoE KO rabbits were featured by heightened infiltration of macrophages (2.7-fold increase) and smooth muscle cells (2.5-fold increase). Furthermore, coronary atherosclerotic lesions were also increased by 1.3-fold in apoE KO rabbits. Lipoprotein analysis revealed that apoB48-rich beta-very-low-density lipoproteins were notably abundant in apoE KO rabbits, suggesting that these remnant lipoproteins of intestinal origin serve as the primary atherogenic lipoproteins. Moreover, apoB48-rich remnant lipoproteins isolated from apoE KO rabbits exhibited heightened susceptibility to copper-induced oxidation. Conclusions: The findings indicate that apoB48-rich remnant lipoproteins, resulting from apoE deficiency, possess greater atherogenic potential than apoB100-rich remnant lipoproteins, regardless of plasma TC levels.

2.
Microb Ecol ; 87(1): 96, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046558

RESUMO

In aquatic ecosystems with low nutrient levels, organic aggregates (OAs) act as nutrient hotspots, hosting a diverse range of microbial species compared to those in the water column. Lake eutrophication, marked by intensified and prolonged cyanobacterial blooms, significantly impacts material and energy cycling processes, potentially altering the ecological traits of both free-living (FL) and particle-attached (PA) bacteria. However, the extent to which observed patterns of FL and PA bacterial diversity, community assembly, and stability extend to hypereutrophic lakes remains understudied. To address this gap, we investigated bacterial diversity, composition, assembly processes, and stability within hypereutrophic Lake Xingyun. Our results revealed that FL bacterial communities exhibited higher α-diversity than PA counterparts, coupled with discernible taxonomic compositions. Both bacterial communities showed distinct seasonality, influenced by cyanobacterial bloom intensity. Environmental factors accounted for 71.1% and 54.2% of the variation among FL and PA bacteria, respectively. The assembly of the PA bacterial community was predominantly stochastic, while FL assembly was more deterministic. The FL network demonstrated greater stability, complexity, and negative interactions, indicative of competitive relationships, while the PA network showed a prevalence of positive correlations, suggesting mutualistic interactions. Importantly, these findings differ from observations in oligotrophic, mesotrophic, and eutrophic lakes. Overall, this research provides valuable insights into the interplay among bacterial fractions, enhancing our understanding of nutrient status and cyanobacterial blooms in shaping bacterial communities.


Assuntos
Bactérias , Biodiversidade , Cianobactérias , Eutrofização , Lagos , Microbiota , Lagos/microbiologia , Cianobactérias/genética , Cianobactérias/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Estações do Ano , Ecossistema , China
3.
Microorganisms ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065203

RESUMO

Volcanic lakes originate from a volcanic crater or caldera, and were a crucial component of aquatic ecosystems. Sediment bacteria play an important role in the nutrient cycling of aquatic ecosystems; however, their patterns distribution in volcanic lakes and the surrounding river habitats are unknown. In this study, we compare the sediment bacterial communities and their co-occurrence networks between these two habitats in the Inner Mongolia Autonomous Region, Northeastern China (the Arxan UNESCO Global Geopark), using 16S rRNA gene amplicon sequencing. The results revealed that there were significant variations in the physicochemical parameters of the sediment between these two habitats. The bacterial α-diversity, ß-diversity, and community composition of the sediment also significantly differed between these two habitats. Network analysis showed that the co-occurrence patterns and keystone taxa in the sediment differed between these two habitats. The sediment bacterial communities in the river habitats were more stable than those in the lake habitats in the face of environmental change. Canonical correspondence analysis demonstrated that both physical (pH and MC) and nutrition-related factors (TN, TP, LOI, and TOC) were the most important environmental factors shaping the variations of bacterial community composition (BCC) in the sediment between these two habitats. This work could greatly improve our understanding of the sediment BCC of the sediment from aquatic ecosystems in the UNESCO Global Geopark.

4.
Appl Environ Microbiol ; 90(7): e0071424, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940583

RESUMO

Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and ß-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.


Assuntos
Bactérias , Lagos , Microbiota , Lagos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Ecossistema , Estações do Ano
5.
Microb Ecol ; 87(1): 68, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722447

RESUMO

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Assuntos
Bactérias , DNA Bacteriano , Sedimentos Geológicos , Lagos , Lagos/microbiologia , Lagos/química , Sedimentos Geológicos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , China , DNA Bacteriano/genética , Ecossistema , RNA Ribossômico 16S/genética , Microbiota
6.
Water Res ; 256: 121559, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579508

RESUMO

Over the last six decades, northwest China has undergone a significant climatic shift from "warm-dry" to "warm-wet", profoundly impacting the structures and functions of lake ecosystem across the region. However, the influences of this climatic transition on the diversity patterns, co-occurrence network, and assembly processes of eukaryotic microbial communities in lake ecosystem, along with the underlying mechanisms, remain largely unexplored. To bridge this knowledge gap, our study focused on Lake Bosten, the largest inland freshwater body in China, conducting a comprehensive analysis. Firstly, we examined the dynamics of key water quality parameters in the lake based on long-term monitoring data (1992-2022). Subsequently, we collected 93 water samples spanning two distinctive periods: low water level (WL) and high total dissolved solids (TDS) (PerWLTDS; 2010-2011; attributed to "warm-dry" climate), and high WL and low TDS (PerTDSWL; 2021-2022; associated with "warm-wet" climate). Eukaryotic microorganisms were further investigated using 18S rRNA gene sequencing and various statistical methods. Our findings revealed that climatic warming and wetting significantly increased eukaryotic microbial α-diversity (all Wilcox. test: P<0.05), while simultaneously reducing ß-diversity (all Wilcox. test: P<0.001) and network complexity. Through the two sampling periods, assembly mechanisms of eukaryotic microorganisms were predominantly influenced by dispersal limitation (DL) and drift (DR) within stochastic processes, alongside homogeneous selection (HoS) within deterministic processes. WL played a mediating role in eukaryotic microbial DL and HoS processes in the PerTDSWL, whereas water quality and α-diversity influenced the DL process in the PerWLTDS. Collectively, these results underscore the direct and indirect impacts of "warm-wet" conditions on the eukaryotic microorganisms within Lake Bosten. This study provides valuable insights into the evolutionary dynamics of lake ecosystems under such climatic conditions and aids in predicting the ecological ramifications of global climatic changes.


Assuntos
Lagos , Lagos/microbiologia , China , Biodiversidade , Mudança Climática , Ecossistema , Eucariotos/genética , RNA Ribossômico 18S/genética
7.
Sci Rep ; 14(1): 4058, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374275

RESUMO

The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 µg L-1 (treatments L, L-E), medium Chl-a level of 468.7 µg L-1 (treatments M, M-E), and high Chl-a level of 924.1 µg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics.


Assuntos
Diatomáceas , Microcystis , Biomassa , Clorofila A , Fósforo/farmacologia , Nitrogênio/farmacologia
8.
Heliyon ; 10(4): e25651, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375307

RESUMO

In applied sectors, data modeling/analysis is very important for decision-making and future predictions. Data analysis in applied sectors mainly relies on probability distributions. Data arising from numerous sectors such as engineering-related fields have complex structures. For such kinds of data having complex structures, the implementation of classical distributions is not a suitable choice. Therefore, researchers often need to look for more flexible models that might have the capability of capturing a high degree of kurtosis and increasing the fitting power of the classical models. Taking motivation from the above theory, to achieve these goals, we study a new probabilistic model, which we named a new beta power flexible Weibull (NBPF-Weibull) distribution. We derive some of the main distributional properties of the NBPF-Weibull model. The estimators for the parameters of the NBPF-Weibull distribution are derived. The performances of these estimators are judged by incorporating a simulation study for different selected values of the parameters. Three data sets are used to demonstrate the applicability of the NBPF-Weibull model. The first data set is observed from sports. It represents the re-injury rate of various football players. While the other two data sets are observed from the reliability zone. By adopting certain diagnostic criteria, it is proven that the NBPF-Weibull model repeatedly surpasses well-known classical and modified models.

9.
J Environ Manage ; 352: 120119, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38244411

RESUMO

Eutrophication is a growing environmental concern in lake ecosystems globally, significantly impacting the structures and ecological functions of bacterioplankton communities and posing a substantial threat to the stability of lake ecosystems. However, the patterns of functional dissimilarity, network complexity, and stability within bacterioplankton communities across different trophic states, along with the underlying mechanisms through which eutrophication influences these aspects, are not well-understood. To bridge this knowledge gap, we collected 88 samples from 34 lakes spanning trophic gradients and investigated bacterioplankton communities using network analysis and multiple statistical methods. Our results reveal that eutrophication, progressing from mesotrophic to hyper-eutrophic states, reduces the putative functional dissimilarity of bacterioplankton, particularly affecting the relative proportions of functional groups such as oxygenic photoautotrophy, phototrophy, and photoautotrophy. Network complexity exhibited a unimodal pattern across increasing trophic states, peaking at mesotrophic states and then decreasing towards hyper-eutrophic conditions, while stability exhibited the opposite pattern (U-shaped), indicating a variation in response to trophic state changes. In essence, eutrophication diminishes network complexity but enhances network stability. Collectively, these findings shed light on the ecological impact of eutrophication on bacterioplankton communities and elucidate the potential mechanisms by which eutrophication drives functional dissimilarity, network complexity and stability within bacterioplankton communities. These insights carry significant implications for the ecological management of eutrophic lakes.


Assuntos
Ecossistema , Lagos , Lagos/química , Eutrofização , Organismos Aquáticos , China
10.
Environ Pollut ; 342: 123058, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042466

RESUMO

Bacterioplankton play a vital role in maintaining the functions and services of lake ecosystems. Understanding the diversity and distribution patterns of bacterioplankton, particularly the presence of potential pathogenic bacterial communities, is crucial for safeguarding human health. In this study, we employed 16S rRNA gene amplicon sequencing to investigate the diversity and geographic patterns of bacterioplankton communities, as well as potential pathogens, in eight volcanic lakes located in the Arxan UNESCO Global Geopark (in the Greater Khingan Mountains of China). Our results revealed that the bacterial communities primarily comprised Bacteroidota (45.3%), Proteobacteria (33.1%), and Actinobacteria (9.0%) at the phylum level. At the genus level, prominent taxa included Flavobacterium (31.5%), Acinetobacter (11.0%), Chryseobacterium (7.9%), and CL500-29 marine group (5.6%). Among the bacterioplankton, we identified 34 pathogen genera (165 amplicon sequence variants [ASVs]), with Acinetobacter (59.8%), Rahnella (18.3%), Brevundimonas (9.6%), and Pseudomonas (5.8%) being the most dominant. Our findings demonstrated distinct biogeographic patterns in the bacterial communities at the local scale, driven by a combination of dispersal limitation and environmental factors influenced by human activities. Notably, approximately 15.3% of the bacterioplankton reads in the Arxan lakes were identified as potential pathogens, underscoring the potential risks to public health in these popular tourist destinations. This study provides the first comprehensive insight into the diversity of bacterioplankton in mountain lake ecosystems affected by high tourist activity, laying the groundwork for effective control measures against bacterial pathogens.


Assuntos
Ecossistema , Lagos , Humanos , Lagos/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Organismos Aquáticos , Plâncton , China
11.
Front Microbiol ; 14: 1261079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808304

RESUMO

Oligosaline lakes in arid and semi-arid regions play a crucial role in providing essential water resources for local populations. However, limited research exists on the impact of the environment on bacterial community structure in these lakes, co-occurrence patterns and the mechanisms governing bacterial community assembly. This study aims to address this knowledge gap by examining samples collected from five areas of Lake Bosten over four seasons. Using the 16S rRNA gene sequencing method, we identified a total of 510 to 1,005 operational taxonomic units (OTUs) belonging to 37 phyla and 359 genera in Lake Bosten. The major bacterial phyla were Proteobacteria (46.5%), Actinobacteria (25.9%), Bacteroidetes (13.2%), and Cyanobacteria (5.7%), while the major genera were hgcI_clade (12.9%), Limnohabitans (6.2%), and Polynucleobacter (4.7%). Water temperature emerged as the primary driver of these community structure variations on global level. However, when considering only seasonal variations, pH and nitrate were identified as key factors influencing bacterial community structures. Summer differed from other seasons in aspects of seasonal symbiotic patterns of bacterial communities, community assembly and function are different from other seasons. There were notable variations in bacterial community structures between winter and summer. Deterministic processes dominated community assembly, but there was an increase in the proportion of stochastic processes during summer. In summer, the functions related to photosynthesis, nitrogen fixation, and decomposition of organic matter showed higher abundance. Our findings shed light on the response of bacterial communities to environmental changes and the underlying mechanisms of community assembly in oligosaline lakes in arid regions.

12.
FEMS Microbiol Ecol ; 99(10)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656870

RESUMO

Eutrophic lakes often exhibit two alternative types: macrophytes-dominated (MD) and phytoplankton-dominated (PD). However, the nature of bacterial community types that whether the transition from the MD to the PD types occurs in a gradual or abrupt manner remains hotly debated. Further, the theoretical recognition that stability regulates the transition of bacterial community types remains qualitative. To address these issues, we divided the transition of bacterial communities along a trophic gradient into 12 successional stages, ranging from the MD to the PD types. Results showed that 12 states were clustered into three distinct regimes: MD type, intermediate transitional type and PD type. Bacterial communities were not different between consecutive stages, suggesting that the transition of alternative types occurs in a continuous gradient. At the same time, the stability of bacterial communities was significantly lower in the intermediate type than in the MD or PD types, highlighting that the collapse and re-establishment of community stability regulate the transition. Further, our results showed that the high complexity of taxon interactions and strong stochastic processes disrupt the stability. Ultimately, this study enables deeper insights into understanding the alternative types of microbial communities in the view of community stability.

13.
Environ Res ; 238(Pt 2): 117235, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775010

RESUMO

Unraveling how climate warming affects microorganisms and the underlying mechanisms has been a hot topic in climate change and microbial ecology. To date, many studies have reported microbial responses to climate warming, especially in soil ecosystems, however, knowledge of how warming influences microeukaryotic diversity, network complexity and stability in lake ecosystems, in particular the possible underlying mechanisms, is largely unknown. To address this gap, we conducted 20 mesocosms spanning five temperature scenarios (26 °C, 27.5 °C, 29 °C, 30.5 °C, and 32 °C) in Lake Bosten, a hotspot for studying climate change, and investigated microeukaryotic communities using 18S rRNA gene sequencing. Our results demonstrated that warming, time, and their interactions significantly reduced microeukaryotic α-diversity (two-way ANOVA: P<0.01). Although warming did not significantly affect microeukaryotic community structure (ANOSIM: P>0.05), it enhanced species turnover. Microeukaryotic networks exhibited distinct co-occurrence patterns and topological properties across temperature scenarios. Warming reduced network complexity and stability, as well as altered species interactions. Collectively, these findings are likely to have implications for ecological management of lake ecosystems, in particular semi-arid and arid regions, and for predicting ecological consequences of climate change.


Assuntos
Mudança Climática , Ecossistema , Análise de Variância , Temperatura
14.
Water Res ; 245: 120572, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688860

RESUMO

Traditional views indicate that eutrophication and subsequent algal blooms favor denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in lake ecosystems. However, lakes tend to show an increasing propensity for inorganic nitrogen (N) limitation as they become more eutrophic. Thus, the influence of further eutrophication on denitrification and DNRA in eutrophic lakes are unclear due to the uncertainty of N availability. To fill this gap, we investigated the genes abundance (AOA, AOB, nirS, nirK and nrfA) and the composition of N-cycling microbes through quantitative PCR and 16S rRNA sequencing analysis, respectively, in 15 shallow eutrophic lakes of the Yangtze-Huaihe River basin, China. The results indicated that denitrification and DNRA rates could be modulated mainly by their functional gene abundances (nirS, nirK and nrfA), followed by the environmental factors (sediment total organic carbon and nitrogen). Denitrification rates significantly increased from slightly to highly eutrophic lakes, but DNRA rates were not. An explanation is that nitrification provided ample nitrate for denitrification, and this cooperative interaction was indicated by the positive correlation of their gene abundances. In addition, Pseudomonas and Anaeromyxobacter was the dominant genus mediated denitrification and DNRA, showing the potential to perform facultative anaerobic and strict anaerobic nitrate reduction, respectively. High level of dissolved oxygen might favor the facultatively aerobic denitrifiers over the obligately anaerobic fermentative DNRA bacteria in these shallow lakes. Chlorophyll a had a weak but positive effect on the gene abundances for nitrification (AOA and AOB). Further eutrophication had an indirect effect on denitrification and DNRA rates through modulating the genes abundances of N-cycling microbes.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Lagos/análise , Desnitrificação , Ecossistema , Clorofila A , RNA Ribossômico 16S/genética , Compostos Orgânicos , Eutrofização , Nitrogênio/análise
15.
China Econ Rev ; 80: 102008, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37351336

RESUMO

The spread of coronavirus disease 2019 (COVID-19) has caused school closures in most countries, affecting over 90% of the world's student population. School closures can widen learning inequalities and disproportionately hurt vulnerable students. We collected data on the exam scores of university applicants in China before and after a two-month period of school closure. We observe that students from rural, lower-income households are more negatively affected by school closures compared to their urban, higher-income counterparts. The inequality effect remains sizable in the admission exam three months after schools reopen. To strengthen the causal interpretation of the results, we investigate the scores in the previous graduating cohorts who did not experience school closure, and find no evidence of the change in scores over the same calendar period. Our study points to the urgent need to address the educational inequality caused by school closures.

16.
Microbiol Spectr ; 11(4): e0317822, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306569

RESUMO

Climate change greatly affects lake microorganisms in arid and semiarid zones, which alters ecosystem functions and the ecological security of lakes. However, the responses of lake microorganisms, especially microeukaryotes, to climate change are poorly understood. Here, using 18S ribosomal RNA (rRNA) high-throughput sequencing, we investigated the distribution patterns of microeukaryotic communities and whether and how climate change directly or indirectly affected the microeukaryotic communities on the Inner Mongolia-Xinjiang Plateau. Our results showed that climate change, as the main driving force of lake change, drives salinity to become a determinant of the microeukaryotic community among the lakes of the Inner Mongolia-Xinjiang Plateau. Salinity shapes the diversity and trophic level of the microeukaryotic community and further affects lake carbon cycling. Co-occurrence network analysis further revealed that increasing salinity reduced the complexity but improved the stability of microeukaryotic communities and changed ecological relationships. Meanwhile, increasing salinity enhanced the importance of deterministic processes in microeukaryotic community assembly, and the dominance of stochastic processes in freshwater lakes transformed into deterministic processes in salt lakes. Furthermore, we established lake biomonitoring and climate sentinel models by integrating microeukaryotic information, which would provide substantial improvements to our predictive ability of lake responses to climate change. IMPORTANCE Our findings have important implications for understanding the distribution patterns and the driving mechanisms of microeukaryotic communities among the lakes of the Inner Mongolia-Xinjiang Plateau and whether and how climate change directly or indirectly affects microeukaryotic communities. Our study also establishes the groundwork to use the lake microbiome for the assessment of aquatic ecological health and climate change, which is critical for ecosystem management and for projecting the ecological consequences of future climate warming.


Assuntos
Ecossistema , Microbiota , Lagos , Mudança Climática , Salinidade , China
17.
Animals (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238108

RESUMO

Continuous body temperature measurement is an important means of studying inflammation and metabolic changes using experimental animals. Although expensive telemetry equipment for collecting multiple parameters is available for small animals, readily used devices for mediate- or large-sized animals are rather limited. In this study, we developed a new telemetry sensor system that can continuously monitor rabbit body temperature. The telemetry sensor was easily implanted subcutaneously in rabbits housed in the animal facility while temperature changes were continuously recorded by a personal computer. Temperature data obtained by the telemetry was consistent with the rectal temperature measured by a digital device. Analysis of body temperature changes of unstrained rabbits, either under the normal condition or fever induced by endotoxin confirms the reliability and usefulness of this system.

18.
Huan Jing Ke Xue ; 44(5): 2592-2600, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177933

RESUMO

Global warming has aggravated the problem of lake eutrophication. As a typical large, eutrophic, shallow lake in China, the issue of cyanobacterial harmful algal blooms (cyanoHABs) was particularly prominent in Lake Taihu. We took Lake Taihu as the study area, using the meteorological (temperature, wind speed, rainfall, and sunshine hours), water quality (total nitrogen, total phosphorus, conductivity, pH, and chemical oxygen demand), and biological (chlorophyll-a in phytoplankton) monitoring data from 1992 to 2020. We built a simulation model of chlorophyll-a based on the Bayesian network model with continuous variables to study the chlorophyll-a level of Lake Taihu under different meteorological and water quality conditions. The 75th percentile of chlorophyll-a concentration was used as the threshold to judge the risk of cyanobacterial bloom. When the probability of chlorophyll-a concentration below this threshold was greater than 75%, it was regarded as "low risk" of cyanobacterial bloom outbreak. The results showed that the average level of "temperature wind ratio" (ratio of air temperature to wind speed) in spring was 6.67℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.130 mg·L-1. The average "temperature wind ratio" level in summer was 10.52℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.257 mg·L-1. The average level of total phosphorus concentration in autumn was 0.154 mg·L-1, and the probability of high chlorophyll-a was less than 75% when the "temperature wind ratio" was less than 6.30℃·s·m-1. Based on the above research, the chlorophyll-a model constructed by the Bayesian network model with continuous variables was further used to simulate the nutrient control objectives under different climate change backgrounds. In order to control chlorophyll-a in Lake Taihu at the:"low risk" level of cyanoHABs, the target concentration thresholds of total phosphorus needed to be controlled under the climate level background from 1992 to 2000, 2001 to 2010, and 2011 to 2020 were given. From 1992 to 2000, the threshold value of total phosphorus concentration was 0.135 mg·L-1 in spring, 0.174 mg·L-1 in summer, and 0.171 mg·L-1 in autumn. From 2001 to 2010, the threshold value of total phosphorus concentration was 0.115 mg·L-1 in spring, 0.164 mg·L-1 in summer, and 0.162 mg·L-1 in autumn. From 2011 to 2020, the threshold value of total phosphorus concentration was 0.059 mg·L-1 in spring, 0.145 mg·L-1 in summer, and 0.145 mg·L-1 in autumn. The results showed that the control of cyanoHABs in eutrophic lakes required more stringent nutrient control strategies with global warming. It provided a reference for preventing and controlling cyanoHABs and eutrophication in Lake Taihu. Previous studies have used multiple regression models, hydrodynamic numerical models, and other methods to predict chlorophyll-a concentrations or cyanobacterial blooms in lakes. However, there has been no study on the prediction of cyanoHABs in lakes based on the Bayesian network model with continuous variables and the "dynamic" evaluation of nutrient thresholds. Therefore, based on the seasonal meteorological, water quality, and biological monitoring data of Lake Taihu from 1992 to 2020, the chlorophyll-a model of Lake Taihu was constructed for the first time based on the Bayesian network model with continuous variables to simulate the chlorophyll-a concentration of Lake Taihu under different climate indicators and total phosphorus concentrations. The weight of its influencing factors was also analyzed, and the nutrient control objectives under different climate scenarios were "dynamically" evaluated.


Assuntos
Cianobactérias , Lagos , Clorofila A/análise , Lagos/microbiologia , Teorema de Bayes , Clorofila/análise , Eutrofização , Proliferação Nociva de Algas , Fósforo/análise , China , Monitoramento Ambiental
19.
Huan Jing Ke Xue ; 44(4): 2052-2061, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040955

RESUMO

Organic aggregates (OA) are the important circulation hub of matter and energy in aquatic ecosystems. However, the comparison studies on OA in lakes with different nutrient levels are limited. In this study, spatio-temporal abundances of OA and OA-attached bacteria (OAB) in oligotrophic Lake Fuxian, mesotrophic Lake Tianmu, middle-eutrophic Lake Taihu, and hyper-eutrophic Lake Xingyun were investigated in different seasons during 2019-2021 using a scanning electron microscope, epi-fluorescence microscope, and flow cytometry. The results showed that:① the annual average abundances of OA in Lake Fuxian, Lake Tianmu, Lake Taihu, and Lake Xingyun were 1.4×104, 7.0×104, 27.7×104, and 16.0×104 ind·mL-1, whereas the annual average abundances of OAB in the four lakes were 0.3×106, 1.9×106, 4.9×106, and 6.2×106 cells·mL-1. The ratios of OAB:total bacteria (TB) in the four lakes were 30%, 31%, 50%, and 38%, respectively. ② OA abundance in summer was significantly higher than that in autumn and winter; however, the ratio of OAB:TB in summer was approximately 26%, which was significantly lower than that in the other three seasons. ③ Lake nutrient status was the most important environmental factor that affected the abundance variations of OA and OAB, accounting for 50% and 68% of the spatio-temporal variations in OA and OAB abundances. ④ Nutrient and organic matters were enriched in OA, especially in Lake Xingyun; the proportions of particle phosphorous, particle nitrogen, and organic matters in this lake were as high as 69%, 59%, and 79%, respectively. Under the circumstance of future climate change and the expansion of lake algal blooms, the effects of algal-originated OA in the degradation of organic matters and nutrient recycling would be increased.


Assuntos
Ecossistema , Lagos , Estações do Ano , Eutrofização , Fósforo
20.
Can J Microbiol ; 69(6): 228-239, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753712

RESUMO

To elucidate the effects of environmental heterogeneity on diversity, composition, and degree of overlap between free-living (FL) and particle-attached (PA) bacteria, we sampled large, shallow, eutrophic Lake Taihu, China across gradients spanning riverine inflow, cyanobacterial blooms, and the open limnetic area. Using high-throughput sequencing of the 16S rRNA gene, we show that (i) bacterial communities near riverine inflow had high α-diversity and a high degree of overlap between FL and PA lifestyles, (ii) communities in cyanobacterial blooms have reduced α-diversity within the PA lifestyle, and (iii) communities from the limnetic area had the lowest bacterial α-diversity within the FL lifestyle and a medium degree of overlap between the FL and PA lifestyles. Redundancy analysis showed that the variation of the FL bacterial community was shaped by suspended solids and total phosphorous, while the variation of the PA bacterial community was shaped by suspended solids, dissolved oxygen, and the percentage of organic matter in suspended solids. This study highlights the importance of environmental heterogeneity, riverine input, cyanobacterial blooms, and nutrient status on the spatial distribution patterns of FL and PA bacterial communities in freshwater lakes.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , RNA Ribossômico 16S/genética , Biodiversidade , Cianobactérias/genética , China , Eutrofização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA