Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Sci J ; 90(3): 393-400, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644155

RESUMO

Soybeans are used increasingly in food products because of their health benefits. In this study, we investigated the effect of soybean antigen protein on weaned piglet intestine. Seventy piglets were randomly divided into seven groups with 10 piglets each. At 7 and 14 days of age, groups A-C were injected with saline, and D-G were intramuscularly injected with or orally administered 7S or 11S. Groups B-G were artificially sensitized by dietary 7S or 11S. At 27 days, the small intestinal tissues were collected to determine levels of histamine, sIgA protein, and IgA mRNA. Histamine in B-G was significantly decreased in the duodenum and ileum. Moreover, sIgA expression was higher in all groups than in A, with B/C>D-G and F/G>D/E; the trend in IgA expression was similar. Collectively, these results indicated that soybean antigen protein-immunizing agents decrease sIgA and IgA levels. Additionally, the effect of injection immunization occurred prior to that of oral immunization.


Assuntos
Antígenos/imunologia , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A/metabolismo , Intestino Delgado/imunologia , Proteínas de Soja/imunologia , Suínos/imunologia , Administração Oral , Fatores Etários , Animais , Expressão Gênica/imunologia , Histamina/metabolismo , Imunoglobulina A/genética , Imunoglobulina A Secretora/genética , Injeções Intramusculares , RNA Mensageiro/metabolismo , Desmame
2.
J Agric Food Chem ; 66(36): 9534-9541, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30139257

RESUMO

ß-Conglycinin (7S) and glycinin (11S) are known to induce a variety of hypersensitivity reactions involving the skin, intestinal tract, and respiratory tract. The present study aimed to identify the mechanism underlying the development of allergy to soybean antigen proteins, using piglets as an animal model. Weaned "Duroc × Landrace × Yorkshire" piglets were fed a diet supplemented with 7S or 11S to investigate the signaling pathway involved in intestinal damage in piglets. Results showed that serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and caspase-3 levels were significantly higher in 7S- and 11S-fed piglets compared to those in suckling or weaned ones. mRNA, protein, and phosphorylation levels of nuclear factor-kappa B (NF-κB), p38, and Jun N-terminal kinase (JNK) were higher in 7S- and 11S-fed piglets than in suckling and weaned ones. Overall, our results indicate that 7S and 11S damaged the intestinal function in piglets through their impact on NF-κB, JNK, and p38 expression.


Assuntos
Antígenos de Plantas/imunologia , Hipersensibilidade Alimentar/imunologia , Globulinas/imunologia , Glycine max/química , Intestinos/lesões , MAP Quinase Quinase 4/imunologia , NF-kappa B/imunologia , Proteínas de Armazenamento de Sementes/imunologia , Proteínas de Soja/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Antígenos de Plantas/efeitos adversos , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/genética , Globulinas/efeitos adversos , Humanos , Intestinos/imunologia , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases , NF-kappa B/genética , Proteínas de Armazenamento de Sementes/efeitos adversos , Proteínas de Soja/efeitos adversos , Glycine max/imunologia , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Gene ; 665: 119-126, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29705127

RESUMO

Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage.


Assuntos
Brassica rapa , Metilação de DNA , DNA de Plantas , Epigênese Genética , Perfilação da Expressão Gênica , Genoma de Planta , Brassica rapa/genética , Brassica rapa/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Endogamia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA