Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 194: 110498, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33220246

RESUMO

Fe(III) oxides have been investigated to accelerate anaerobic methanogenic degradation of complex organic compounds. However, the critical role linked to the characteristics of different types of Fe(III) oxides is still unclear. Study presented here performed a side-by-side comparison of four types of Fe(III) oxides including Fe(III)-citrate, ferrihydrite, hematite and magnetite to evaluate their effectiveness in methanogenic degradation of phenol. Results showed that, amorphous Fe(III)-citrate group showed the fastest phenol degradation and Fe2+ release among all the groups, followed by poorly crystalline ferrihydrite. Although Fe(III)-citrate group also showed the fastest methane production rate, the efficiency of electron recovery in methane production was only 58-78%, which was evidently lower than that in both crystalline hematite (86-89%) and magnetite (93-97%) groups. Methane production rate with non-conductive ferrihydrite was nearly same as that with conductive magnetite, both of which were significantly higher than that with semi-conductive hematite. X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis showed that sludge collected from hematite and magnetite group still respectively presented a relatively intact characteristic spectra involved in hematite and magnetite. Differently, the characteristic spectra involved in ferrihydrite was not evident in sludge collected from ferrihydrite group, whereas the characteristic spectra involved in magnetite was detected. Microbial community analysis showed that, both Fe(III)-citrate and ferrihydrite specially enriched Fe(III)-reducing bacteria capable of degrading phenol into fatty acids (Trichococcus and Caloramator) via dissimilatory Fe(III) reduction. Fe(III)-citrate also stimulated the growth of Syntrophus capable of degrading phenol/benzoate into acetate and proceeding direct interspecies electron transfer (DIET). In magnetite and hematite group, the abundance of Enterococcus species evidently increased, and they might proceed DIET with Methanothrix species in syntrophic conversion of fatty acids into methane.


Assuntos
Compostos Férricos , Óxidos , Anaerobiose , Óxido Ferroso-Férrico , Metano , Oxirredução
2.
J Microbiol ; 58(9): 741-749, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32710299

RESUMO

Microbial communities greatly affect rearing water quality and the larvae health during shrimp hatchery periods. In this study, we investigated the microbial communities of rearing water and larvae of Litopenaeus vannamei after treating hatchery water with different kinds of chemical disinfectants: no disinfectants (Con), chlorine dioxide (ClO2), formaldehyde solution (HCHO), bleach powder (CaClO), and iodine (I2). The water and larval samples were collected from nauplius 6 (N6), zoea 1 (Z1), mysis 1 (M1), and postlarvae 1 (P1) shrimp growth periods. 16S rDNA high-throughput sequencing revealed that the bacterial composition of the rearing water was more complex than that of the larvae, and the bacterial community of the rearing water and the larvae fluctuated significantly at the P1 and Z1 periods, respectively. Disinfectants altered the bacterial diversity and composition of the rearing water and larvae. Specifically, in the rearing water of the P1 period, Proteobacteria abundance was increased in the HCHO group; while Bacteroidetes abundance was decreased in the ClO2, HCHO, and I2 groups but increased in the CaClO group. In the larvae of the Z1 period, Firmicutes (especially Bacillus class) abundance was increased in the CaClO group, but decreased in the ClO2, HCHO, and I2 groups. Network analyses revealed that the genera Donghicola, Roseibacterium, Candidatus-Cquiluna, and Nautella were enriched in the rearing water, while Halomonas, Vibrio, and Flavirhabdus had high abundance in the larvae. The survival of shrimp was influenced by disinfectants that were inconsistent with the bacterial community changes. These results will be helpful for using microbial characteristics to facilitate healthy shrimp nursery.


Assuntos
Bactérias/isolamento & purificação , Desinfetantes/farmacologia , Desinfecção/métodos , Penaeidae/microbiologia , Purificação da Água/métodos , Animais , Bactérias/classificação , Bactérias/genética , Compostos de Cálcio/farmacologia , Compostos Clorados/farmacologia , DNA Ribossômico/genética , Pesqueiros , Formaldeído/farmacologia , Iodo/farmacologia , Larva/microbiologia , Microbiota/efeitos dos fármacos , Óxidos/farmacologia , RNA Ribossômico 16S/genética , Qualidade da Água
3.
AMB Express ; 10(1): 109, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504358

RESUMO

Shrimp production is the second ranked of the most-traded production in these decades and the whiteleg shrimp Litopenaeus vannamei is the sixth most cultured species. Probiotics are alternative strategy for the promotion of growth and prevention of diseases in aquaculture. To confirm the effects of the probiotics on development and microbial community of L. vannamei larvae during different development stages, five kinds of probiotics (108 ~ 109 CFU/g) were added into the rearing environment of shrimp larvae, and the effects of probiotics on bacterial community and water quality, larval growth and immune index were determined from nauplius larval stage to post larval stage. Results suggested that probiotics treated groups showed larger survival rate than the control groups from Z1 stage to P5 stage. Lactobacillus could improve the larvae's survival ability, especially in the larval stages M2, M3, P1, P5 stage. It was confirmed that probiotics could promote the growth and development of shrimp larvae and prevent the incomplete molting in their growing process, particularly for EM-treated group. Results suggested that all the probiotics-treated groups had shown significant decreasing trend in the quantity of vibrios, except for the SA-treated group. And different probiotics could inhibit vibrios during different life periods. Among these probiotics, LA, EM and PB had shown the best effects, including improving survival rate of the larvae, promoting the larval metamorphosis, reducing the quantity of vibrios and NH4-N and NO2-N levels, and increasing bacterial diversity.

4.
Water Res ; 176: 115763, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272323

RESUMO

Kitchen wastes (KW) have been widely investigated for bio-ethanol production, while no study utilizes KW as ethanol source to stimulate the methanogenic communities to perform direct interspecies electron transfer (DIET), since the excess acidity contained after the biological ethanol-type fermentation pretreatment (BEFP) can seriously inhibit the DIET-based syntrophic metabolism. In this study, a strategy that utilized waste activated sludge (WAS) as co-substrate to relieve the excess acidity after BEFP during anaerobic co-digestion (AcoD) was proposed. The results showed that, under the mixed ratio of 1:2 and 1:5 (KW:WAS, volume ratio), both methane production and organic compound removal evidently increased, compared with that treating the sole WAS. Conversely, under the other mixed ratios (sole KW, 5:1, 2:1 and 1:1), no methane but the evident hydrogen production was detected, and syntrophic metabolism of organic acids and alcohols was prevented. Three-dimensional excitation emission matrix (3D-EEM) analysis showed that the protein-like organic compounds contained in both KW and WAS were effectively degraded. Furthermore, the maximum methane production potential from WAS during AcoD (260.5 ± 4.1 and 264.3 ± 2.7 mL/g-COD) was higher than that treating sole WAS (250.8 ± 0.1 mL/g-COD). Microbial community analysis showed that, some genera capable of metabolizing the complex organic compounds with the reduction of the elemental sulfur or equipped with the electrically conductive pili were specially enriched during AcoD under the mixed ratio of 1:2 and 1:5. They might proceed DIET with methanogens, such as Methanosarcina and Methanospirillum species, to maintain the syntrophic metabolism effective and stable, since the abundance of both Methanosarcina and Methanospirillum species evidently increased.


Assuntos
Etanol , Esgotos , Anaerobiose , Reatores Biológicos , Elétrons , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA