Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452911

RESUMO

Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Microbiologia do Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Gases de Efeito Estufa/análise , Solo/química , Microbiota , Poluentes do Solo/análise , Bactérias/genética , Bactérias/metabolismo
2.
Environ Toxicol ; 39(2): 551-561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37436232

RESUMO

BACKGROUND AND STUDY AIM: The mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) into hepatocellular carcinoma (HCC) remains confusing and the therapeutics approaches are also challenging. Here, we aimed to investigate the effects of scoparone on the treatment of HCC stemmed from NAFLD and the underlying mechanisms. MATERIALS AND METHODS: A model of NAFLD-HCC was created in mice, and these mice were treated with scoparone. Biochemical assays were conducted to assess the levels of biochemical markers. Tumors were evaluated through morphological examination. Histopathological analyses were performed using oil red O, Hematoxylin and Eosin, and Masson coloration assays. Immunohistochemistry (IHC) and RT-PCR were performed to analyze protein expression and measure mRNA expression levels, respectively. RESULTS: Scoparone could ameliorate the pathological alterations observed in NAFLD-HCC mouse model. IHC analysis indicated an upregulation of NF-κB p65 expression in both NAFLD and NAFLD-HCC models, which was subsequently reverted by scoparone administration. Furthermore, scoparone treatment resulted in a reversal of the increased mRNA expression levels of NF-κB target genes, including TNF-α, MCP-1, iNOS, COX-2, NF-κB, and MMP-9, which were originally elevated in the NAFLD-HCC condition. Additionally, scoparone exhibited a capacity to counteract the activation of the MAPK/Akt signaling in the NAFLD-HCC model. CONCLUSION: These findings suggest that scoparone holds promise as a potential therapeutic agent for NAFLD-associated HCC, and its model of action may involve the regulation of inflammatory pathways governed by the MAPK/Akt/NF-κB signaling cascade.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Proteínas Quinases p38 Ativadas por Mitógeno , RNA Mensageiro
3.
Water Sci Technol ; 86(5): 1232-1252, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36358058

RESUMO

As an emerging environment functional material, biochar has become a research hotspot in environmental fields because of its excellent ecological and environmental benefits. Recently, biochar has been used as an innovative soil ameliorant in bioretention systems (BRS) to effectively enhance pollutant removal efficiency for BRS. This paper summarizes and evaluates the performance and involved mechanisms of biochar amendment in BRS with respect to the removal of nutrients (TN (34-47.55%) and PO43--P (47-99.8%)), heavy metals (25-100%), pathogenic microorganisms (Escherichia coli (30-98%)), and organic contaminants (77.2-100%). For biochar adsorption, the pseudo-second-order and Langmuir models are the most suitable kinetic and isothermal adsorption models, respectively. Furthermore, we analyzed and elucidated some factors that influence the pollutant removal performance of biochar-amended BRS, such as the types of biochar, the preparation process and physicochemical properties of biochar, the aging of biochar, the chemical modification of biochar, and the hydraulic loading, inflow concentration and drying-rewetting alternation of biochar-amended BRS. The high potential for recycling spent biochar in BRS as a soil ameliorant is proposed. Collectively, biochar can be used as an improved medium in BRS. This review provides a foundation for biochar selection in biochar-amended BRS. Future research and practical applications of biochar-amended BRS should focus on the long-term stability of treatment performances under field conditions, chemical modification with co-impregnated nanomaterials in biochar surface, and the durability, aging, and possible negative effects of biochar.


Assuntos
Poluentes Ambientais , Metais Pesados , Solo/química , Carvão Vegetal/química , Adsorção
4.
Comput Math Methods Med ; 2022: 6249534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572840

RESUMO

Objective: Liver cancer seriously threatens the health of people. Meanwhile, it has been reported that bufalin could act as an inhibitor in liver cancer. In addition, alisol B 23-acetate is a natural product derived from Alisma plantago-aquatica Linn which has an antitumor effect. In this study, we aimed to explore whether alisol B 23-acetate could increase the antitumor effect of bufalin on liver cancer. Methods: In order to detect the effect of alisol B 23-acetate in combination with bufalin on liver cancer, human liver cancer SMMC-7721 and MHCC97 cells were used as subjects. Bufalin and alisol B 23-acetate were performed on cells. Cell viability was tested by MTT assay. In addition, flow cytometry was performed to assess the cell apoptosis. Autophagy-related protein levels were tested by western blotting. Results: The data revealed that bufalin significantly decreased the viability of liver cancer cells, and the inhibitory effect was further increased by alisol B 23-acetate. In addition, alisol B 23-acetate notably enhanced the apoptotic effect of bufalin on liver cancer cells through mediation of Mcl-1, Bax, Bcl-2, and cleaved caspase-3. Meanwhile, alisol B 23-acetate in combination with bufalin induced the autophagy in liver cancer cells through mediation of Beclin-1 and p62. Furthermore, alisol B 23-acetate in combination with bufalin significantly downregulated the level of GSK-3ß and increased the expression of ß-catenin in liver cancer cells. Conclusion: In summary, these findings provide the first evidence that alisol B 23-acetate improves the anticancer activity of bufalin on liver cancer through activation of the Wnt/ß-catenin axis, and these outcomes might shed new lights on exploring the new methods against liver cancer.


Assuntos
Neoplasias Hepáticas , beta Catenina , Apoptose , Bufanolídeos , Linhagem Celular Tumoral , Colestenonas , Glicogênio Sintase Quinase 3 beta/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , beta Catenina/farmacologia
5.
Sci Total Environ ; 827: 154295, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35247404

RESUMO

In laboratory experiments, the nitrogen migration and transformation in the stormwater bioretention system under different dry-wet alterations were studied. The removal efficiency showed that nitrogen could be removed efficiently in bioretention system under all dry-wet alterations, and the shorter antecedent dry days (ADDs) (1-5 days) were beneficial to the removal of nitrogen before plants decay, compared to the longer ADDs (7-22 days). Using a new method combined with Hydrus-1D model, water transport was simulated and nitrogen migration in bioretention system was quantified, indicating that NH4+-N was mainly removed in the planting layer, and the removal of NO3--N was occurred in the submerged layer. Fate experiment showed the main fate of the nitrogen was microorganisms (1-5 ADDs) and soil immobilization (7-22 ADDs). Microbial analysis showed that shorter ADDs (1-5 days) were suitable for Firmicutes growth, while Proteobacteria and Actinobacteria accounted for greater abundance under longer ADDs (7-22 days). Canonical correlation analysis (CCA) revealed the relationships between microbial community and environmental factors. Soil moisture content, soil organic matter (SOM), TN (water), root length, and NO3--N (water) were significantly correlated with bacterial community. This work may give new insights into nitrogen migration and transformation, and can provide a reference for the further mechanism study and construction of stormwater bioretention systems.


Assuntos
Microbiota , Nitrogênio , Desnitrificação , Nitrogênio/análise , Chuva , Solo , Água
6.
Clin Investig Arterioscler ; 33(5): 257-266, 2021.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33810882

RESUMO

INTRODUCTION: In parallel with the improvement of living standard, Non-alcoholic fatty liver disease (NAFLD) becomes the most common liver disease around the world. Huazhi Fugan Granules (HZFGG) is a formula which is used to treating of fatty liver, Based on the data we studied, HZFGG may have potential as a therapeutic formula for the alleviation of NAFLD. OBJECTIVES: The aim of our study was to identifying the improvement of HZFGG on NAFLD and exploring the potential mechanisms. METHODS: MCD diet fed C57BL/6 mice once a day for 4 weeks to induce NAFLD model, HZFGG (10, 15, 20g/kg) orally administered simultaneously. The serum levels of TC, TG, ALT, AST were detected. H&E and Oil Red O staining were used to observed the liver sections. TNF-α, IL-1ß and Gpx were also detected. The expression levels of TLR4, MyD88, p-NF-κB, NF-κB, p-IκBa were measured by western blotting assay. The apoptosis of the liver tissues were detected by TUNEL assay. RESULTS: HZFGG decreased the serum levels of TC, TG, ALT, AST in MCD-diet mice. HZFGG alleviated inflammation by decreasing the levels of TNF-α and IL-1ß and ameliorated oxidative stress through increased the level of Gpx. HZFGG Attenuates MCD-induced liver steatosis and injury in mice. Hepatocyte apoptosis was decreased after HZFGG treatment. Furthermore, HZFGG also suppressed the expression levels of TLR4 and MyD88, subsequently, inhibited the phosphorylation of NF-κB and IκBa. CONCLUSION: HZFGG can improved MCD induced hepatic injury through inhibited TLR4/NF-κB signaling pathway in NAFLD model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...