Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 45(11): 2132-2143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601874

RESUMO

The efficient removal of 2-Methylisoborneol (2-MIB), a typical odour component, in water treatment plants (WTPs), poses a great challenge to conventional water treatment technology due to its chemical stability. In this study, the combination of ultraviolet light-emitting diode (UV-LED) and chlorine (UV-LED/chlorine) was exploited for 2-MIB removal, and the role of ultraviolet (UV) wavelength was investigated systematically. The results showed that UV or chlorination alone did not degrade 2-MIB effectively, and the UV/chlorine process could degrade 2-MIB efficiently, following the pseudo-first-order kinetic model. The 275 nm UV exhibited higher 2-MIB degradation efficiency in this UV-LED/chlorine system than 254 nm UV, 265 nm UV and 285 nm UV due to the highest mole adsorption coefficient and quantum yield of chlorine in 275 nm UV. ·OH and ·Cl produced in the 275 nm UV/chlorine system played major roles in 2-MIB degradation. HCO3- and Natural organic matter (NOM), prevalent in water, consumed ·OH and ·Cl, thus inhibiting the 2-MIB degradation by UV-LED/chlorine. In addition, NOM and 2-MIB could form a photonic competition effect. The degradation of 2-MIB by UV-LED/chlorine was done mainly through dehydration and demethylation, and odorous intermediates, such as camphor, were produced. 2-MIB was degraded through the α bond fracture and six-membered ring opening to form saturated or unsaturated hydrocarbons and aldehydes. Four DBPs, chloroform (CF), trichloroacetaldehyde (TCE), trichloroacetone (TCP) and dichloroacetone (DCP), were mainly generated, and CF was the most significant by-product.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Desinfecção/métodos , Poluentes Químicos da Água/química , Raios Ultravioleta , Halogenação , Clorofórmio , Cinética , Purificação da Água/métodos , Oxirredução
2.
Sci Total Environ ; 912: 168920, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029977

RESUMO

Pre-oxidation and powdered activate carbon (PAC) are usually used to remove algae and odorants in drinking waterworks. However, the influence of interaction between oxidants and PAC on the treatment performance are scarcely known. This study systematically investigated the combination schemes of four oxidants (KMnO4, NaClO, ClO2, and O3) and PAC on the inactivation of Microcystis aeruginosa cells and removal of four frequently detected odorants in raw water (diethyl disulfide (DEDS), 2,2'-oxybis(1chloropropane) (DCIP), 2-methylisoborneol (2-MIB) and geosmin (GSM)). O3 showed highest pseudo-first-order removal rate for all four compounds and NaClO exhibited highest inactivation rates for the cell viability and Chlorophyll a (Chl-a). The Freundlich model fitted well for the adsorption of DEDS and DCIP by PAC. When treated by combined oxidation/PAC, the removal ratio of algae cells and odorants were lower (at least 1.6 times) than the sum of removal ratios obtained in oxidation or PAC adsorption alone. Among these four oxidants, the highest synchronous control efficiency of odorants (52 %) and algae (66 %) was achieved by NaClO/PAC. Prolonging the dosage time interval promoted the removal rates. The pre-PAC/post-oxidation processes possessed comparable efficiency for the removal of odorants and algae cells comparing with pre-oxidation/post-PAC process, but significantly inhibited formation of disinfection byproducts (DBPs), especially for the formation of C-DBPs (for NaClO and ClO2), bromate (for O3) and chlorate/chlorite (for ClO2). This study could provide a better understanding of improving in-situ operation of the combined pre-treatments of oxidation and PAC for source water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Desinfecção , Carvão Vegetal , Odorantes , Adsorção , Pós , Clorofila A , Água
3.
Sci Total Environ ; 880: 163297, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028653

RESUMO

Mixed chlorine/chloramines are common in drinking water distribution systems (DWDSs); however, their transformation and impact on chemical and microbial characteristics are not well understood. We systematically investigated water quality parameters associated with mixed chlorine/chloramine species conversion in 192 samples (including raw, finished, and tap water) collected throughout the year in a city in East China. Various chlorine/chloramine species (free chlorine, monochloramine [NH2Cl], dichloramine [NHCl2], and organic chloramines [OC]) were detected in both chlorinated and chloraminated DWDSs. NHCl2 + OC increased with transport distance along the pipeline network. The maximum proportion of NHCl2 + OC in over total chlorine in tap water reached 66 % and 38 % from chlorinated and chloraminated DWDSs, respectively. Both free chlorine and NH2Cl showed a rapid decay in the water pipe systems, but NHCl2 and OC were more persistent. Correlations between chlorine/chloramine species and physicochemical parameters were established. Models for predicting the sum of chloroform/TCM, bromodichloromethane/BDCM, chlorodibromomethane/CBDM, and bromoform/TBM (THM4) (R2 = 0.56) and haloacetic acids (HAAs) (R2 = 0.65) exhibited greater accuracy based on machine learning tuned with chlorine/chloramine species, particularly NHCl2 + OC. The predominant bacterial communities in mixed chlorine/chloramine systems were those resistant to chlorine or chloramine such as proteobacteria. NH2Cl was the most significant explanatory factor (28.1 %) for the variation in microbial community assemblage in chloraminated DWDSs. Although residual free chlorine and NHCl2 + OC, accounted for a smaller proportion of chlorine species in chloraminated DWDSs, they played an essential role (12.4 % and 9.1 %, respectively) in the microbial community structure.


Assuntos
Água Potável , Purificação da Água , Cloraminas , Cloro , Qualidade da Água , Desinfecção
4.
J Clin Med ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36769601

RESUMO

PURPOSE: To evaluate the effectiveness of donor in vitro fertilization (IVF-D) and donor artificial insemination (AI-D) in clinical outcomes, risks, and costs. METHODS: This study analyzed the cycle changes and clinical outcomes in 20,910 IVF-D and 16,850 AI-D cycles between 2013 and 2021 in the Reproductive and Genetic Hospital of CITIC-Xiangya. A cost-effectiveness analysis was performed to evaluate the costs per couple and per live birth cycle in the two treatment groups. RESULTS: IVF-D had higher pregnancy and live birth rates than AI-D (p < 0.001). The cumulative pregnancy and live birth rates for three AI-D cycles were 41.01% and 32.42%, respectively, higher than the rates for one or two AI-D cycles. The multiple birth and birth defect rate of AI-D was lower than that of IVF-D significantly. IVF-D mean cost per couple was higher than that of AI-D (CNY32,575 vs. CNY11,062, p < 0.001), with a mean cost difference of CNY21,513 (95% confidence interval, CNY20,517-22,508). The mean costs per live birth cycle for IVF-D and AI-D were CNY49,411 and CNY31,246, respectively. CONCLUSION: AI-D is more cost-effective and poses a lower risk for infertility couples than IVF-D, and patients should undergo three AI-D cycles to obtain the highest success rate.

5.
Mol Psychiatry ; 28(3): 1383-1395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481932

RESUMO

In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.


Assuntos
Sistema Hipotálamo-Hipofisário , Receptores de Glucocorticoides , Feminino , Gravidez , Animais , Camundongos , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Homeostase
6.
Chemosphere ; 313: 137529, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529176

RESUMO

Combining pre-oxidation with activated carbon adsorption was explored as an ideal approach for removing iodine from water source to eliminate the formation of Iodinated trihalomethanes (I-THMs). Compared with permanganate and monochloramine, chlorine is more suitable as pre-oxidant to obtain higher active iodine species (HOI/I2). Active iodine species adsorption using both powdered activated carbon (PAC) and granular activated carbon (GAC) can be well fitted the pseudo-second-order kinetic model indicating that chemical adsorption was the dominant mechanism for HOI/I2 adsorption. The average pore size of activated carbons was the most strongly correlated with the adsorption capacity (R2 > 0.98), followed by methylene blue (R2 > 0.76), pore volume (R2 > 0.70) and iodine number (R2 > 0.67). Moreover, three models, including intraparticle diffusion, Byod kinetic, and diffusion-chemisorption were used to illustrate the mechanisms of HOI/I2 adsorption. Chemical adsorption was the dominant mechanism for HOI/I2 adsorption. In summary, at the molar ratio of [NaClO] and [I-] as 1.2, pre-chloriantion time of 5 min, subsequently dosage of 15 mg/L of PAC E with 20 min adsorption can remove 79.8% iodine. In addition, the combined process can eliminate 61%-87.2% of I-THMs in the subsequent chlor(am)ination. The results indicate that pre-chlorination combined with PAC can effectively removed HOI/I2 and attenuate I-THMs formation in the subsequent disinfection process.


Assuntos
Água Potável , Iodo , Purificação da Água , Carvão Vegetal , Trialometanos , Halogenação , Adsorção , Purificação da Água/métodos
7.
Water Res ; 226: 119200, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257154

RESUMO

To improve the performance of the conventional coagulation process, a permanganate (Mn(VII)) pre-oxidation combined with Fe(III)/peroxymonosulfate (PMS) coagulation process (Mn(VII)-Fe(III)/PMS) that can significantly improve the removal of dissolved organic carbon (DOC), turbidity, and micropollutants is proposed in this study. Compared with conventional Fe(III) coagulation, the Mn(VII)-Fe(III)/PMS process can also significantly enhance the removal of iohexol and sulfamethoxazole in raw water. During this process, the primary reduction product, Mn(IV), after Mn(VII) pre-oxidation was adsorbed on the floc surfaces and involved in the Fe(III)/PMS process. The natural organic matter (NOM) in raw water mediated the redox cycle of iron. The synergistic effect of NOM, Fe, and Mn facilitated the redox cycle of Mn(III)/Mn(IV) and Fe(III)/Fe(II) to promote the activation of PMS. The sulfate radical (SO4•-) played an important role in the degradation of micropollutants. The formation potential of the detected volatile disinfection by-product (DBP) during the subsequent chlorination was reduced by 21.9% after the Mn(VII)-Fe(III)/PMS process. This study demonstrated the promising application of the Mn(VII)-Fe(III)/PMS process for coagulation and micropollutant control and illustrated the reaction mechanism. This study provides guidance for improving conventional drinking water treatment processes.


Assuntos
Compostos Férricos , Purificação da Água , Peróxidos , Oxirredução
8.
Sci Total Environ ; 853: 158626, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087680

RESUMO

Fungi in drinking water have been long neglected due to the lack of convenient analysis methods, widely accepted regulations and efficient control strategies. However, in the last few decades, fungi in drinking water have been widely recognized as opportunity pathogens that cause serious damage to the health of immune-compromised individuals. In drinking water treatment plants, fungal spores are more resistant to chlorine disinfection than bacteria and viruses, which can regrow in drinking water distribution systems and subsequently pose health threats to water consumers. In addition, fungi in drinking water may represent an ignored source of taste and odor (T&O). This review identified 74 genera of fungi isolated from drinking water and presented their detailed taxonomy, sources and biomass levels in drinking water systems. The typical pathways of exposure of water-borne fungi and the main effects on human health are clarified. The fungi producing T&O compounds and their products are summarized. Data on free chlorine or monochloramine inactivation of fungal spores and other pathogens are compared. At the first time, we suggested four chlorine-resistant mechanisms including aggregation to tolerate chlorine, strong cell walls, cellular responses to oxidative stress and antioxidation of melanin, which are instructive for the future fungi control attempts. Finally, the inactivation performance of fungal spores by various technologies are comprehensively analyzed. The purpose of this study is to provide an overview of fungi distribution and risks in drinking water, provide insight into the chlorine resistance mechanisms of fungal spores and propose approaches for the control of fungi in drinking water.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Humanos , Cloro/farmacologia , Esporos Fúngicos , Odorantes , Virulência , Melaninas , Desinfecção/métodos , Fungos
9.
J Hazard Mater ; 436: 129195, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739725

RESUMO

Chlorine dioxide (ClO2) has emerged as a broad-spectrum, safe, and effective disinfectant due to its high oxidation efficiency and reduced formation of organochlorinated by-products during application. This article provides an updated overview of ClO2-based oxidation processes used in water treatment. A systematic review of scientific information and experimental data on ClO2-based water purification procedures is presented. Concerning ClO2-based oxidation derivative problems, the pros and cons of ClO2-based combined processes are assessed and disinfection by-product (DBP) control approaches are proposed. The kinetic and mechanistic data on ClO2 reactivity towards micropollutants are discussed. ClO2 selectively reacts with electron-rich moieties (anilines, phenols, olefins, and amines) and eliminates certain inorganic ions and microorganisms with high efficiency. The formation of chlorite and chlorate during the oxidation process is a crucial concern when utilizing ClO2. Future applications include the combination of ClO2 with ferrous ions, activated carbon, ozone, UV, visible light, or persulfate processes. The combined process can reduce by-product generation while still ensuring ClO2 sterilization and disinfection. Overall, this research could provide useful information and new insights into the application of ClO2-based technologies.


Assuntos
Compostos Clorados , Desinfetantes , Purificação da Água , Cloro , Desinfecção/métodos , Óxidos , Purificação da Água/métodos
10.
J Environ Sci (China) ; 117: 141-150, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725066

RESUMO

UV/peroxymonosulfate (UV/PMS) advanced oxidation process has attracted significant attention for removal of micropollutants in water. However, during practical water treatment applications, the PMS treatment must be performed before the UV treatment to achieve full contact. In this study, sulfamethoxazole (SMX) was selected as the target micropollutant. Four different operational approaches, including UV alone, PMS alone, simultaneous UV/PMS and sequential PMS-UV, were compared for their differences in SMX removal and disinfection by-product (DBP) formation potentials during chlorine-driven disinfection. Among the four approaches, UV/PMS and PMS-UV achieved over 90% removal efficiencies for SMX without substantial differences. For raw water, the trichloronitromethane (TCNM) formation potential after treatment with PMS-UV was lower than that after UV/PMS treatment. The time interval over which the PMS-UV process was conducted had little effect on the final removal efficiency for SMX. However, a brief (5 min) pre-PMS treatment significantly reduced the TCNM formation potential and the genotoxicity from DBPs. The formation risk for TCNM during chlorination increased markedly with increasing PMS dosages, and the appropriate dosage under these experimental conditions was suggested to be 0.5-1.0 mmol/L. Under alkaline conditions, PMS-UV treatment can enhance SMX degradation as well as dramatically reduced the formation potentials for haloketones, haloacetonitriles and halonitromethanes. This study suggests that proper optimization of UV/PMS processes can remove SMX and reduce its DBP formation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Halogenação , Peróxidos , Sulfametoxazol , Poluentes Químicos da Água/análise
11.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628595

RESUMO

Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.


Assuntos
Herbicidas , Oryza , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Espécies Reativas de Oxigênio
12.
Water Res ; 219: 118528, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569275

RESUMO

Permanganate (Mn(VII)) is widely used as a mild oxidant in water treatment. However, the reaction rates of some emerging contaminants with Mn(VII) are extremely low. In this study, benzoquinone (BQ), a redox mediator with the important component in dissolved organic matter (DOM), enhanced the oxidation of bisphenol A (BPA) by Mn(VII) in a wide pH range of 4.0-10.0. The redox cycle of BQ would produce semiquinone radicals, which could act as ligands to stabilize the formed Mn(III) in the system to promote the oxidation of BPA. Notably, the presence of BQ might promote the formation of MnO2. A novel mechanism was proposed that singlet oxygen (1O2), Mn(III)-ligands (Mn(III)-L) and in-situ formed MnO2 were the main contributors to accelerate BPA degradation in the Mn(VII)/BQ system. Under acidic conditions, the in-situ formed MnO2 involved in the redox reaction and part of the Mn(IV) was reduced to Mn(III), indicating that the electron transfer of BQ promoted the formation of active Mn species and enhanced the Mn(VII) oxidation performance. Semiquinone radicals generated by BQ transformation would couple with the hydrogen substitution products of BPA to inhibit BPA self-coupling and promote the ring-opening reactions of BPA. Mn(VII)/BQ had better effect in raw water than in pure water, indicating that the Mn(VII)/BQ system has high potential for practical application. This study provided insights into the role of DOM in enhancing the Mn(VII) oxidation in water treatment.


Assuntos
Compostos de Manganês , Óxidos , Compostos Benzidrílicos , Benzoquinonas , Ligantes , Oxirredução , Fenóis , Quinonas
13.
Asian J Androl ; 24(6): 563-569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381695

RESUMO

In the 1960s, sperm cryopreservation was developed as a method to preserve fertility. Currently, techniques for the cryopreservation of human spermatozoa have been widely used in assisted reproduction. However, although sperm cryobiology has made notable achievements, the optimal method for the recovery of viable spermatozoa after cryopreservation remains elusive. Postthawing sperm quality can be affected by cryoprotectants, ice formation, storage conditions, and osmotic stress during the freezing process. This review discusses recent advances in different cryopreservation techniques, cryoprotectants, and freezing and thawing methods during cryopreservation and new indications for the use of cryopreserved spermatozoa.


Assuntos
Preservação do Sêmen , Humanos , Masculino , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Sêmen , Criopreservação/métodos , Espermatozoides , Crioprotetores/farmacologia
14.
J Hazard Mater ; 429: 128370, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121291

RESUMO

Iodinated trihalomethanes (I-THMs) have drawn increasing concerns due to their higher toxicity than those of their chlorinated and brominated analogues. In this study, I-THM formation was firstly evaluated for three treatment scenarios - (i) chlorine alone, (ii) chloramine alone, and (iii) mixed chlorine/chloramine - in the presence and absence of UV irradiation for the iodide-containing humic acid solution or natural water. The results indicated that I-THM formation decreased in the order of mixed chlorination/chloramination > chloramination > > chlorination, which fitted the trend of toxicity evaluation results using Chinese hamster ovary cells. Conversely, total organic halide concentration decreased in the order of chlorination > > chloramination ≈ mixed chlorination/chloramination. Besides, I-THM formation can be efficiently controlled in a UV-activated mixed chlorine/chloramine system. Influencing factors including pH values and Br-/I- molar ratios were also systematically investigated in a mixed chlorine/chloramine system. Enhanced I-THM formation was observed with increasing pH values (6.0-8.0) and Br-/I- molar ratios (1: 1-10: 1). The results obtained in this study can provide new insights into the increasing risk of I-THM formation in a mixed chlorine/chloramine system and the effective control of I-THMs in the iodide-containing water using UV irradiation.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Células CHO , Cloraminas , Cloro , Cricetinae , Cricetulus , Desinfecção/métodos , Halogenação , Trialometanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
15.
Andrology ; 10(4): 710-719, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35179322

RESUMO

BACKGROUND: Many cryopreservation carriers have been introduced to freeze rare human spermatozoa, however, these carriers relative attributes and comparative effectivenesses have not yet been systematically studied. OBJECTIVES: Is the micro-straw cryopreservation carrier more effective for cryopreserving rare human spermatozoa compared with the Cryoplus and a new micro-straw (LSL straw) carriers? MATERIALS AND METHODS: This study involves 93 samples from healthy sperm donors and 40 samples from patients diagnosed with oligospermia, asthenospermia, oligoasthenospermia, or obstructive azoospermia. We determined the optimal freeze-thaw protocol for the Micro-straw carrier. The post-thaw survival rate, normal sperm morphology, acrosome integrity, and DNA fragmentation for Micro-straw, Cryoplus, and LSL carriers were then determined. Finally, we verified the effects of freezing using these carriers by comparing the qualities of post-thaw spermatozoa from patients. RESULTS: The highest total motility (TM) and progressive motility (PR) survival rates were obtained by placing the Micro-straw at 1 cm above the LN2 surface for 70 s during freezing and in a 42°C water bath for 40 s during thawing. No differences were observed in the PR survival rate, acrosome integrity, and DNA fragmentation of the post-thaw spermatozoa from the three carriers. However, the normal morphology rate of spermatozoa frozen using the Micro-straw carrier was higher than for the Cryoplus carrier (p < 0.05), and the TM survival rate of spermatozoa frozen with the Micro-straw was higher than that for the LSL carrier (p < 0.01). In verification tests, there were no significant differences in the quality of post-thaw spermatozoa cryopreserved using these carriers for both rare spermatozoa or epididymal sperm. DISCUSSION AND CONCLUSION: Micro-straw, Cryoplus, and LSL carriers are all efficient means of freezing rare human spermatozoa. However, the Micro-straw carrier is more economical, safe, and user-friendly.


Assuntos
Preservação do Sêmen , Acrossomo , Criopreservação/métodos , Congelamento , Humanos , Masculino , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides
16.
Chemosphere ; 286(Pt 2): 131747, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358893

RESUMO

Pyrimidine and purine bases (adenine, cytosine, guanine and thymine) are important precursors of organic chloramines (OC) and disinfection by-products (DBPs) during chlor(am)ination. In this study, OC and DBP formation derived from pyrimidine and purine bases during chlor(am)ination, post-chlor(am)ination after pretreated by UV alone and UV/chlorination were systematically investigated with ultraviolet light-emitting diodes (UV-LEDs, 265 and 275 nm) and low pressure mercury lamp (LPUV, 254 nm). The results revealed that higher OC formation was observed during chlorination than that during chloramination of pyrimidine and purine bases. The degradation of pyrimidine and purine bases followed the pseudo-first-order kinetics. Both solution pH and UV wavelength played vital influence on the degradation of pyrimidine and purine bases. In terms of fluence-based rate constants (kobs), the degradation rates of pyrimidine and purine bases decreased in the order of 275 nm > 265 nm > 254 nm in alkaline conditions. The synergistic effects of kobs, chlorine,kobs, •OH and kobs, RCS contributed to the differences of pyrimidine and purine bases degradation at different pH values and UV wavelengths. A vital suppression of OC formation was observed during post-chlorination after pretreated by 275 nm UV-LED/chlorination. In addition, compared with LPUV (254 nm), less DBP formation was observed at UV-LED (275 nm), especially during the UV/chlorine process. The phenomena obtained in this study indicated that 275 nm UV-LED combined with chlorine could be a preferred method to promote pyrimidine and purine bases degradation and control OC and DBP formation in practical water treatment.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloro , Desinfecção , Halogenação , Purinas , Pirimidinas , Poluentes Químicos da Água/análise
17.
World J Stem Cells ; 13(11): 1797-1812, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34909124

RESUMO

BACKGROUND: Human spermatogonial stem cells (SSCs) are the basis of spermatogenesis. However, little is known about the developmental regulatory mechanisms of SSC due to sample origin and species differences. AIM: To investigates the mechanisms involved in the proliferation of human SSC. METHODS: The expression of mitogen-activated protein kinase kinase 7 (MKK7) in human testis was identified using immunohistochemistry and western blotting (WB). MKK7 was knocked down using small interfering RNA, and cell proliferation and apoptosis were detected by WB, EdU, cell counting kit-8 and fluorescence-activated cell sorting. After bioinformatic analysis, the interaction of MKK7 with c-Jun N-terminal kinases ( JNKs ) was verified by protein co-immunoprecipitation and WB. The phosphorylation of JNKs was inhibited by SP600125, and the phenotypic changes were detected by WB, cell counting kit-8 and fluorescence-activated cell sorting. RESULTS: MKK7 is mainly expressed in human SSCs, and MKK7 knockdown inhibits SSC proliferation and promotes their apoptosis. MKK7 mediated the phosphorylation of JNKs, and after inhibiting the phosphorylation of JNKs, the phenotypic changes of the cells were similar to those after MKK7 downregulation. The expression of MKK7 was significantly downregulated in patients with abnormal spermatogenesis, suggesting that abnormal MKK7 may be associated with spermatogenesis impairment. CONCLUSION: MKK7 regulates the proliferation and apoptosis of human SSC by mediating the phosphorylation of JNKs.

18.
Water Res ; 203: 117549, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419919

RESUMO

Odors and tastes have become universal problems related to drinking water quality. In addition to the typical odor problems caused by algae or microorganisms, the occurrence of odors derived from drinking water disinfection have attracted attention. The chlor(am)ination-derived odor substances have certain toxicity and odor-causing characteristics, and would enter the tap water through water distribution systems, directly affecting drinking water safety and customer experience. This study provided a comprehensive overview of the occurrence, detection, and control of odor substances derived from drinking water chlor(am)ination disinfection. The occurrence and formation mechanisms of several typical types of disinfection derived odor substances were summarized, including haloanisoles, N-chloroaldimines, iodotrihalomethanes, and halophenoles. They are mainly derived from specific precursors such as halophenols, anisoles, and amino acids species during the disinfection or distribution networks. In addition, the change of disinfectant during chlor(am)ination was also one of the causes of disinfection odors. Due to the extremely low odor threshold concentrations (OTCs) of these odor substances, the effective sample pre-enrichment for instrument identification and quantification are essential. The control strategies of odor problems mainly include adsorption, chemical oxidation, and combined processes such as ozonation and biological activated carbon processes (O3/BAC) and ultraviolet-based advanced oxidation processes (UV-AOPs). Finally, the challenges and possible future research directions in this research field were discussed and proposed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Odorantes , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 779: 146340, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744578

RESUMO

A novel light source UV-C laser was applied in persulfate (PS) activation to effectively remove iodinated X-ray contrast medias (ICMs) including iohexol (IOX), iopamidol (IPM) and diatrizoate (DTZ) in this study. Significant ICMs degradation was observed in UV-C laser/PS systems with pseudo first-order rate constants of 0.022-0.067 s-1. Sulfate radicals (SO4•-) were the main active species in the three ICMs degradation, and the steady-state concentrations ([SO4•-]ss) were 3.629 × 10-11 M (IOX), 1.702 × 10-11 M (IPM) and 1.148 × 10-11 M (DTZ), respectively. Under the high intensity of UV-C laser, the optimal reaction efficiency was achieved at pH = 7.0 with PS concentration of 1.0 mM, and the degradation efficiency for IOX reached 93.8% within only 40 s. Both bicarbonate and chloride ions could inhibit the three ICMs degradation and the inhibition rate increased with the increase of ions concentration. The kinetic models were established and the steady-state concentrations of radicals were calculated. Density functional theory (DFT) calculations combined with experiments were used to derive the reaction pathways for three ICMs. Cyclic voltammetry measurements detected a lower redox potential peak in IOX degradation, revealing the existence of electron shuttles under the UV-C laser irradiation to promote the redox reaction. This study is the first report of UV-C laser activation of persulfate. It is a new advanced oxidation process mediated by very effective photolysis and active species formation.

20.
Water Res ; 193: 116851, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540343

RESUMO

This study investigated the mechanisms of mixed IO3-/I- system under UV irradiation in drinking water and compared the iodinated trihalomethanes (I-THMs) formation of a mixed IO3-/I- system to that of single I- and IO3- systems during subsequent chloramination. The effects of initial I-/IO3- molar ratio, pH, and UV intensity on a mixed IO3-/I- system were studied. The introduction of I- enhanced the conversion rate of IO3- to reactive iodine species (RIS). Besides, IO3- degradation rate increased with the increase of initial I- concentration and UV intensity and the decrease of pH value. In a mixed IO3-/I- system, IO3- could undergo direct photolysis and photoreduction by hydrated electron (eaq-). Moreover, the enhancement of I-THM formation in a mixed IO3-/I- system during subsequent chloramination was observed. The I-THM yields in a mixed IO3-/I- system were higher than the sum of I-THMs produced in a single IO3- and I- systems at all the evaluated initial I- concentrations and pH values. The difference between I-THM formation in a mixed IO3-/I- system and the sum of I-THMs in a single IO3- and I- systems increased with the increase of initial I- concentration. As the initial pH decreased from 9 to 5, the difference of I-THM yields enhanced, while the total I-THM yield of a mixed IO3-/I- system and single I- and IO3- systems decreased slightly. Besides, IO3--I--containing water with DOC concentration of 2.5-4.5 mg-C/L, which mainly contained humic-acid substances, had a higher risk in I-THMs formation than individual I--containing and IO3--containing water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Iodatos , Iodetos , Fotólise , Trialometanos/análise , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...