Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 916: 148425, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575102

RESUMO

Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.


Assuntos
Arachis , Melhoramento Vegetal , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal/métodos , Genoma de Planta , Evolução Molecular , Genômica/métodos , Domesticação , Produtos Agrícolas/genética , Mapeamento Cromossômico
2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203792

RESUMO

Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.


Assuntos
Arachis , Fusarium , Arachis/genética , Proteômica , Perfilação da Expressão Gênica
3.
Toxins (Basel) ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276533

RESUMO

(1) Background: Safety problems associated with aflatoxin B1 (AFB1) contamination have always been a major threat to human health. Removing AFB1 through adsorption is considered an attractive remediation technique. (2) Methods: To produce an adsorbent with a high AFB1 adsorption efficiency, a magnetic reduced graphene oxide composite (Fe3O4@rGO) was synthesized using one-step hydrothermal fabrication. Then, the adsorbent was characterized using a series of techniques, such as SEM, TEM, XRD, FT-IR, VSM, and nitrogen adsorption-desorption analysis. Finally, the effects of this nanocomposite on the nutritional components of treated foods, such as vegetable oil and peanut milk, were also examined. (3) Results: The optimal synthesis conditions for Fe3O4@rGO were determined to be 200 °C for 6 h. The synthesis temperature significantly affected the adsorption properties of the prepared material due to its effect on the layered structure of graphene and the loading of Fe3O4 nanoparticles. The results of various characterizations illustrated that the surface of Fe3O4@rGO had a two-dimensional layered nanostructure with many folds and that Fe3O4 nanoparticles were distributed uniformly on the surface of the composite material. Moreover, the results of isotherm, kinetic, and thermodynamic analyses indicated that the adsorption of AFB1 by Fe3O4@rGO conformed to the Langmuir model, with a maximum adsorption capacity of 82.64 mg·g-1; the rapid and efficient adsorption of AFB1 occurred mainly through chemical adsorption via a spontaneous endothermic process. When applied to treat vegetable oil and peanut milk, the prepared material minimized the loss of nutrients and thus preserved food quality. (4) Conclusions: The above findings reveal a promising adsorbent, Fe3O4@rGO, with favorable properties for AFB1 adsorption and potential for food safety applications.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Humanos , Grafite/química , Aflatoxina B1/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Óleos de Plantas , Fenômenos Magnéticos , Nanocompostos/química , Cinética
4.
Theor Appl Genet ; 133(7): 2051-2061, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32144466

RESUMO

KEY MESSAGE: Two QTLs on ChrB09 significantly associated with both early and late leaf spots were identified by genome-wide association study in the US peanut mini-core collection. Early leaf spot (ELS) and late leaf spot (LLS) are two serious peanut diseases in the USA, causing tens of millions of dollars of annual economic losses. However, the genetic factors underlying resistance to those diseases in peanuts have not been well-studied. We conducted a genome-wide association study for the two peanut diseases using Affymetrix version 2.0 SNP array with 120 genotypes mainly coming from the US peanut mini-core collection. A total of 46 quantitative trait loci (QTLs) were identified with phenotypic variation explained (PVE) from 10.19 to 24.11%, in which eighteen QTLs are for resistance to ELS and 28 QTLs for LLS. Among the 46 QTLs, there were four and two major QTLs with PVE higher than 16.99% for resistance ELS and LLS, respectively. Of the six major QTLs, five were located on the B sub-genome and only one was on the A sub-genome, which suggested that the B sub-genome has more potential resistance genomic regions than the A sub-genome. In addition, two genomic regions on chromosome B09 were found to provide significant resistance to both ELS and LLS. A total of 74 non-redundant genes were identified as resistance genes, among which, twelve candidate genes were in significant genomic regions including two candidate genes for both ELS and LLS, and other ten candidate genes for ELS. The QTLs and candidate genes obtained from this study will be useful to breed peanuts for resistances to the diseases.


Assuntos
Arachis/genética , Resistência à Doença/genética , Genes de Plantas , Ligação Genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Folhas de Planta
5.
Adv Sci (Weinh) ; 7(4): 1901672, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099754

RESUMO

Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...