Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(44): e2303625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381623

RESUMO

Solid-state lithium metal batteries with garnet-type electrolyte provide several advantages over conventional lithium-ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid-state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub-nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid-state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li-ions, and blocks any electronic leakage. The sub-nanometer scale pores in CNM allow rapid permeation of Li-ions across the electrode-electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm-2 and enables the cycling of all-solid-state batteries at low stack pressure of 2 MPa using LiFePO4 cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.

2.
Soft Matter ; 19(9): 1705-1708, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36786895

RESUMO

We have proposed an approach to achieve nanofibers or composite nanofibers with functional nanoparticles via the protrusion of the budding interfacial membrane in an oil-water emulsion droplet stabilized with copolymers. The nanofibers were formed by the wrapping of the monolayer of the copolymers. The length is tunable with the copolymer concentration and water/oil ratio of the emulsion.

3.
Small ; 18(52): e2205080, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344458

RESUMO

Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.


Assuntos
Iodetos , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Força Atômica
4.
Angew Chem Int Ed Engl ; 61(27): e202205183, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470952

RESUMO

We report the large-scale synthesis of photoluminescent single-chain nanoparticles (SCNPs) by electrostatic-mediated intramolecular crosslinking in a concentrated solution of 40 mg mL-1 by continuous addition of the free radical initiator. Poly(vinyl benzyl chloride) was charged by quaternization with vinyl-imidazolium for the intramolecular crosslinking by using 2,2-dimethoxy-2-phenylacetophenone (DMAP) as the radical initiator. Under the electrostatic repulsion thus interchain isolation, the intrachain crosslinking experiences the transition from coil through pearl-necklace to globular state. The SCNPs demonstrate strong photoluminescence in the visible range when the non-emissive units are confined thereby. Composition and microstructure of the SCNPs are tunable. The photoluminescent tadpole-like Janus SCNP can be used to selectively illuminate interfacial membranes while stabilizing the emulsions.

5.
Macromol Rapid Commun ; 43(8): e2200016, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218095

RESUMO

A zwitterionic polymeric hair-coated stainless steel mesh membrane is fabricated, which demonstrates efficient separation of oil/water mixtures and emulsions. The hairy coating of poly(divinylbenzene-co-vinylbenzene chloride) is generated by precipitation cationic polymerization, and subsequently grafting a zwitterionic polymer layer by atom transfer radical polymerization of sulfobetaine methacrylate. The microstructure of the hairy coating is tunable from an array of individual nanofibers to porous networks by interweaving of the hairs. The long-range attraction of zwitterionic polymers with water renders the coated mesh with excellent superhydrophilic and underwater superoleophobic performance. The coated mesh is highly antifouling to avoid the prehydration in conventional methods. Moreover, the microstructure is demonstrated to be responsible for the high separation efficiency of oil/water emulsion. Therefore, separation of oil/water mixtures and emulsions becomes easier by the coated mesh, which is promising in industrial oil field sewage treatment.

6.
Nanoscale ; 13(48): 20583-20591, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874038

RESUMO

In recent years, functional molecular nanosheets have attracted much attention in the fields of sensors and energy storage. Here, we present an approach for the synthesis of photoactive metal-organic nanosheets with ultimate molecular thickness. To this end, we apply low-energy electron irradiation induced cross-linking of 4'-(2,2':6',2''-terpyridine-4'-yl)-1,1'-biphenyl-4-thiol self-assembled monolayers on gold to convert them into functional ∼1 nm thick carbon nanomembranes possessing the ability to reversibly complex lanthanide ions (Ln-CNMs). The obtained Ln-CNMs can be prepared on a large-scale (>10 cm2) and inherit the photoactivity of the pristine terpyridine lanthanide complex (Ln(III)-tpy). Moreover, they possess mechanical stability as free-standing sheets over micrometer sized openings. The presented methodology paves a simple and robust way for the preparation of ultrathin nanosheets with tailored photoactive properties for application in photocatalytic and energy conversion devices.

7.
ACS Nano ; 14(8): 9972-9978, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589396

RESUMO

Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.


Assuntos
Carbono , Elétrons , Microscopia Crioeletrônica , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
8.
Nanoscale ; 12(16): 8656-8663, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32266915

RESUMO

Delamination and transfer of two-dimensional (2D) materials from their synthesis substrates onto target substrates is an important task for their implementation in both fundamental and applied research. To this end, the electrochemical delamination based transfer has been successfully applied to a variety of inorganic 2D materials grown on conductive substrates. However, this promising method has not yet been demonstrated for organic 2D materials, which have recently gained significant importance in the 2D materials family. Here, we present a transfer method of molecular nanosheets covalently bonded to metal substrates based on electrochemical delamination, which involves the cleavage of an Au-S bond and hydrogen evolution. We demonstrate a successful transfer of different types of carbon nanomembranes (CNMs) - about 1 nm thick molecular nanosheets - synthesized from aromatic thiol-based self-assembled monolayers on various polycrystalline gold substrates, onto new target substrates such as SiO2/Si wafers and transmission electron microscopy grids. We analyze the subsequent nanofabrication steps, and chemical and structural characteristics of the transferred supported and suspended CNMs by X-ray photoelectron spectroscopy (XPS), optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The XPS analysis enables us to reveal the chemical mechanisms during the delamination process, whereas the complementary microscopy measurements confirm a high structural integrity of the transferred molecular nanosheets. We expect that the developed methodology can be applied to a broad variety of organic 2D materials synthesized on conductive substrates.

9.
Chemistry ; 26(29): 6473-6478, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32150652

RESUMO

Field effect transistors (FETs) based on 2D materials are of great interest for applications in ultrathin electronic and sensing devices. Here we demonstrate the possibility to add optical switchability to graphene FETs (GFET) by functionalizing the graphene channel with optically switchable azobenzene molecules. The azobenzene molecules were incorporated to the GFET channel by building a van der Waals heterostructure with a carbon nanomembrane (CNM), which is used as a molecular interposer to attach the azobenzene molecules. Under exposure with 365 nm and 455 nm light, azobenzene molecules transition between cis and trans molecular conformations, respectively, resulting in a switching of the molecular dipole moment. Thus, the effective electric field acting on the GFET channel is tuned by optical stimulation and the carrier density is modulated.

10.
Opt Express ; 27(24): 35475-35484, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878718

RESUMO

Monolayers of transition metal dichalcogenides have a strong second-order nonlinear response enabling second-harmonic generation. Here, we control the spatial radiation properties of the generated second harmonic by patterning MoS2 monolayers using focused ion beam milling. We observe diffraction of the second harmonic into the zero and first diffraction orders via an inscribed one-dimensional grating. Additionally, we included a fork-like singularity into the grating to create a vortex beam in the first diffraction order.

11.
Nanoscale ; 11(43): 20785-20791, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31656965

RESUMO

Two-dimensional (2D) membranes featuring arrays of sub-nanometer pores have applications in purification, solvent separation and water desalination. Compared to channels in bulk membranes, 2D nanopores have lower resistance to transmembrane transport, leading to faster passage of ions. However, the formation of nanopores in 2D membranes requires expensive post-treatment using plasma or ion bombardment. Here, we study bottom-up synthesized porous carbon nanomembranes (CNMs) of biphenyl thiol (BPT) precursors. Sub-nanometer pores arise intrinsically during the BPT-CNM synthesis with a density of 2 ± 1 pore per 100 nm2. We employ BPT-CNM based pore arrays as efficient ion sieving channels, and demonstrate selectivity of the membrane towards ion transport when exposed to a range of concentration gradients of KCl, CsCl and MgCl2. The selectivity of the membrane towards K+ over Cl- ions is found be 16.6 mV at a 10 : 1 concentration ratio, which amounts to ∼30% efficiency relative to the Nernst potential for complete ion rejection. The pore arrays in the BPT-CNM show similar transport and selectivity properties to graphene and carbon nanotubes, whilst the fabrication method via self-assembly offers a facile means to control the chemical and physical properties of the membrane, such as surface charge, chemical nature and pore density. CNMs synthesized from self-assembled monolayers open the way towards the rational design of 2D membranes for selective ion sieving.

12.
ACS Appl Mater Interfaces ; 11(34): 31176-31181, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357855

RESUMO

The electron-irradiation-induced synthesis of carbon nanomembranes (CNMs) from aromatic thiol-based self-assembled monolayers (SAMs) on gold substrate is a well-established method to form molecular thin nanosheets. These molecular two-dimensional materials can be prepared with tunable properties; therefore, they find a variety of applications in nanotechnology ranging from ultrafiltration to nanobiosensors. However, no chemically inert CNM was fabricated up to now, as the reactive thiol group is present on the membrane surface even after transferring it to other substrates. Here, we study the electron irradiation of carboxylic acid-based SAMs on a silver substrate as an alternative route for CNM formation. Our analysis, based on a combination of X-ray photoelectron spectroscopy and scanning electron microscopy demonstrates that for this type of SAMs, purely carbonaceous CNMs with tunable porosity can be obtained.

13.
Macromol Biosci ; 16(1): 75-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524353

RESUMO

Patterned polypeptoid brushes on gold and oxide substrates are synthesized by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides. Their biofouling resistance is shown by protein and cell adhesion experiments. The accessibility of the system to common patterning protocols is demonstrated by UV-lithography and a µCP approach. Moreover, the terminal secondary amine group of the polypeptoid brushes is functionalized with different fluorescent dyes to demonstrate their chemical accessibility.


Assuntos
Incrustação Biológica/prevenção & controle , Adesão Celular , Peptoides/síntese química , Proteínas/química , Humanos , Peptoides/química , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...