Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660037

RESUMO

The isolation of specific grain size classes of lithogenic samples and biogenic carbonate from the <63 µm fraction (i.e. clay and silt) of marine sediment is often a prerequisite to further pre-treatments and/or analytical measurements for palaeoceanographic studies. Established techniques employed have included sieving, settling and micro-filtration (and/or a combination of these). However, these methods often use significant amounts of bulk sediment (often up to ∼3 g) and/or require considerable amounts of time during sediment processing (ranging from 48 h to 3 weeks) to isolate a size specific class for further analyses. Here, we build on previous approaches to isolate three grain size classes (e.g. <2 µm, clay; 2-10 µm, fine silt; and 10-63 µm, coarse silt) from the <63 µm fraction of marine sediment with the aid of a centrifuge at varying revolutions per minute using Stokes' Law. We show the utility of our approach using two common sediment types dominated by (i) lithogenic and (ii) biogenic carbonate (specifically coccoliths) components of marine sediment cores. Our method reduces the amount of sample material required to 1-2 g to provide an isolated clay fraction (or other targeted size fraction) and decreases the sample processing time (to ∼1 hour) to enable high throughput of analysis, when compared to previous techniques for palaeoceanographic proxy measurements.•We recommend a more straightforward grain size isolation method for lithogenic sediment and biogenic carbonate sediment types•Isolating commonly targeted grain size fractions for palaeoceanographic studies using a centrifuge.

2.
Science ; 376(6596): 961-967, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617392

RESUMO

Prior to ~1 million years ago (Ma), variations in global ice volume were dominated by changes in obliquity; however, the role of precession remains unresolved. Using a record of North Atlantic ice rafting spanning the past 1.7 million years, we find that the onset of ice rafting within a given glacial cycle (reflecting ice sheet expansion) consistently occurred during times of decreasing obliquity whereas mass ice wasting (ablation) events were consistently tied to minima in precession. Furthermore, our results suggest that the ubiquitous association between precession-driven mass wasting events and glacial termination is a distinct feature of the mid to late Pleistocene. Before then (increasing), obliquity alone was sufficient to end a glacial cycle, before losing its dominant grip on deglaciation with the southward extension of Northern Hemisphere ice sheets since ~1 Ma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...