Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 377: 128940, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958681

RESUMO

Low-temperature torrefaction assisted with solid-state KOH/urea applied onto wheat straw was proposed to break down the lignocellulosic material to enhance biomethane production in anaerobic digestion (AD). The optimization of key parameters applying the Box-Behnken design and response surface methodology showed that an addition of 0.1 g/gstraw KOH/urea at 180 °C while torrefying for 30 min was the optimal condition for producing biomethane. Results indicate that co-applying KOH and urea in torrefaction synergistically enhanced the biodegradability of straw by effectively removing lignin and largely retaining cellulose, giving rise to a 41 % increase in the cumulative methane production compared to untreated straw (213 mL/g-volatile solids (VSraw)) from batch AD. Additionally, the nitrogen- and potassium-rich digestates helped to improve soil fertility, thus achieving a zero-waste discharge. This study demonstrated the feasibility of using solid-state KOH/urea assisted low-temperature torrefaction as an effective pretreatment method to promote methane production during AD.


Assuntos
Triticum , Ureia , Anaerobiose , Temperatura , Metano , Biocombustíveis
2.
Phys Rev Lett ; 129(12): 121102, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179190

RESUMO

The MICROSCOPE mission was designed to test the weak equivalence principle (WEP), stating the equality between the inertial and the gravitational masses, with a precision of 10^{-15} in terms of the Eötvös ratio η. Its experimental test consisted of comparing the accelerations undergone by two collocated test masses of different compositions as they orbited the Earth, by measuring the electrostatic forces required to keep them in equilibrium. This was done with ultrasensitive differential electrostatic accelerometers onboard a drag-free satellite. The mission lasted two and a half years, cumulating five months worth of science free-fall data, two-thirds with a pair of test masses of different compositions-titanium and platinum alloys-and the last third with a reference pair of test masses of the same composition-platinum. We summarize the data analysis, with an emphasis on the characterization of the systematic uncertainties due to thermal instabilities and on the correction of short-lived events which could mimic a WEP violation signal. We found no violation of the WEP, with the Eötvös parameter of the titanium and platinum pair constrained to η(Ti,Pt)=[-1.5±2.3(stat)±1.5(syst)]×10^{-15} at 1σ in statistical errors.

3.
ACS Omega ; 7(12): 10559-10567, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382301

RESUMO

Halide perovskite materials have been recently recognized as promising materials for piezoelectric nanogenerators (PENGs) due to their potentially strong ferroelectricity and piezoelectricity. Here, we report a new method using a poly(vinylidene fluoride) (PVDF) polymer to achieve excellent long-term stable black γ-phase CsPbI3 and explore the piezoelectric performance on a CsPbI3@PVDF composite film. The PVDF-stabilized black-phase CsPbI3 perovskite composite film can be stable under ambient conditions for more than 60 days and over 24 h while heated at 80 °C. Piezoresponse force spectroscopy measurements revealed that the black CsPbI3/PVDF composite contains well-developed ferroelectric properties with a high piezoelectric charge coefficient (d 33) of 28.4 pm/V. The black phase of the CsPbI3-based PVDF composite exhibited 2 times higher performance than the yellow phase of the CsPbI3-based composite. A layer-by-layer stacking method was adopted to tune the thickness of the composite film. A five-layer black-phase CsPbI3@PVDF composite PENG exhibited a voltage output of 26 V and a current density of 1.1 µA/cm2. The output power can reach a peak value of 25 µW. Moreover, the PENG can be utilized to charge capacitors through a bridge rectifier and display good durability without degradation for over 14 000 cyclic tests. These results reveal the feasibility of the all-inorganic perovskite for the design and development of high-performance piezoelectric nanogenerators.

4.
Carbohydr Polym ; 280: 119005, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027120

RESUMO

Conventional hydrogels with isotropic polymer networks usually lack selective response to external stimuli and that limits their applications in intelligent devices. Herein, hydrogels with distinctive anisotropic optical characteristics combined with thermosensitivity were prepared through in situ photopolymerization. Self-assembled cellulose nanocrystals (CNCs) with chiral nematic ordered structure were embedded in polyethylene glycol derivatives/polyacrylamide polymer networks. The arrangement of CNCs showed a strong dependence on the self-assembly angle and standing time, enabling the fabrication of hydrogels with customizable CNCs arrangements. Increasing the self-assembly angle from 0° to 90° changed the CNCs arrangement from chiral nematic to symmetrical nematic order which, together with CNCs dynamic arrangement from isotropic to annealed chiral nematic phase at longer standing time, provided versatile ways to produce CNCs hydrogels with tunable anisotropic properties. In addition, the obtained hydrogel displayed reversible temperature and compression response, showing excellent promise to be used as soft mechanical stress and temperature sensors or novel anti-counterfeiting materials.


Assuntos
Celulose/química , Hidrogéis/química , Nanopartículas/química , Acrilamida/química , Anisotropia , Polietilenoglicóis/química , Polímeros/química , Estresse Mecânico , Temperatura
5.
ACS Appl Mater Interfaces ; 14(3): 4119-4131, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35025196

RESUMO

Despite advances in the development of individual nanogenerators, the level of output energy generation must be increased to meet the demands of commercial electronic systems and to broaden their scope of application. To harvest low-frequency ambient mechanical energy more efficiently, we proposed a highly integrated hybridized piezoelectric-triboelectric-electromagnetic (tristate) nanogenerator in a uniaxial structure. In its highly integrated approach, a piezoelectric nanogenerator (PENG) based on CsPbBr3 (cesium lead bromide) nanoparticles (NPs) and poly(dimethylsiloxane) (PDMS) nanocomposite was fabricated on a triboelectrically negative nanostructured polyimide (PI) substrate. A cylindrical aluminum electrode grooved with permanent magnets was directed to move along a spring-less metallic guide bounded by these nanocomposites, thus essentially forming two single-electrode mode triboelectric nanogenerators (TENGs). By its optimized material design and novel integration approach of the PENGs, TENGs, and electromagnetic generators (EMGs), this uniaxial tristate hybrid nanogenerator (UTHNG) can synergistically produce an instantaneous electrical power of 49 mW at low-frequency ambient vibration (5 Hz). The UTHNG has excellent charging characteristics, ramping up the output voltage of a 22 µF capacitor to 2.7 V in only 12 s, which is much faster than individual nanogenerators. This work will be a superior solution for harvesting low-frequency ambient energies by improving the performance of hybrid nanogenerators, potentially curtailing the technology gap for self-powered micro/nanosystems for the Internet of Things.

6.
Carbohydr Polym ; 278: 118920, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973739

RESUMO

Gas detection in flexible electronics demands novel materials with superior sensing performance that have high mechanically strength, are flexible, low-cost, and sustainable. We explore a composite sensing nanopaper based on lignocellulosic cellulose nanofibrils (LCNF) as a renewable and mechanically strong substrate that enables the fabrication of flexible, and highly sensitive gas sensors. In the system the hydrophobic lignin covalently bonds to cellulose in the nanofibrils, increasing the nanopaper water-resistance and limiting sensing materials response to humidity. The sensor is composed of polyaniline (PANI) grown on flexible LCNF and reduced graphene oxide (rGO) nanosheets. The proposed structure, at 10 wt% rGO, demonstrated a 10-fold improvement in sensitivity to volatile amines (i.e. ammonia detection down to 1 ppm) while maintaining an acceptable selectivity. Furthermore, we demonstrated the application of the sensing nanopaper in a microwave sensor that paves the path toward flexible, wireless, and high-performance sensing devices.


Assuntos
Amônia/análise , Lignina/química , Nanofibras/química , Dispositivos Eletrônicos Vestíveis , Compostos de Anilina/química , Grafite/química , Umidade
7.
ChemSusChem ; 14(4): 1057-1067, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33244899

RESUMO

The increasing demand for wearable electronics has driven the development of supercapacitor electrode materials toward enhanced energy density, while being mechanically strong, flexible, as well as environmentally friendly and low-cost. Taking advantage of faradaic reaction of quinone groups in natural lignin that is covalently bound to the high-strength cellulose nanofibrils, the fabrication of a novel class of mechanically strong and flexible thin film electrodes with high energy storage performance is reported. The electrodes were made by growing polyaniline (PANI) on flexible films composed of lignin-containing cellulose nanofibrils (LCNF) and reduced graphene oxide (rGO) nanosheets at various loading levels. The highest specific capacitance was observed for the LCNF/rGO/PANI electrode with 20 wt% rGO nanosheets (475 F g-1 at 10 mV s-1 and 733 F g-1 at 1 mV s-1 ), which represented a 68 % improvement as compared to a similar electrode made without lignin. In addition, the LCNF/rGO(20)/PANI electrode demonstrated high rate performance and cycle life (87 % after 5000 cycles). These results indicated that LCNF functioned as an electrochemically active multifunctional component to impart the composite electrode with mechanical strength and flexibility and enhanced overall energy storage performance. LCNF/rGO(20)/PANI electrode was further integrated in a flexible supercapacitor device, revealing the excellent promise of LCNF for fabrication of advanced flexible electrodes with reduced cost and environmental footprint and enhanced mechanical and energy storage performances.

8.
ACS Appl Mater Interfaces ; 12(8): 9746-9754, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31995354

RESUMO

Ammonia is a key compound in a variety of industrial sectors, including automotive, chemical, and food. Its hazardous effects on the environment and human health require the implementation of proper safety guidelines and monitoring techniques. An attractive approach is to add sensing functionality to low-cost wireless communication devices to allow for the monitoring/mapping of the chemical environment across a large area. This study outlines a highly sensitive contactless ammonia gas sensor with the potential for continuous and wireless mapping of ammonia emissions by integrating an antenna on the device. The devices were fabricated by casting a novel advanced sensing nanocomposite, polyaniline (PANI), and phosphate-functionalized reduced graphene oxide (P-rGO) on split-ring resonators (SRRs). P-rGO incorporation in PANI produced a positive-sensing synergistic effect to multiply the sensing response severalfold to ammonia and dimethylamine gases. Furthermore, we identified that the modification of the semiconductive behavior of the nanosheets, achieved via phosphate functionalization, is the key factor to the positive-sensing synergy observed in the nanocomposites because of the formation of localized heterojunctions. The prepared SRRs exhibited remarkably a low detection limit, ∼1 ppm, to ammonia gas, as well as good stability and selectivity, which paves the path for a novel generation of wireless, chipless, potentially fully printable, and passive sensor platforms.

9.
Chem Commun (Camb) ; 56(9): 1373-1376, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31909400

RESUMO

Phosphate functionalized carbon nanomaterials have attracted significant attention because of their potential applications in energy storage applications. Herein we report a facile one-pot method to prepare water dispersible phosphate functionalized reduced graphene oxide and demonstrate the potential of the novel materials for energy storage applications. The synthesis method shows promise to promote a wider adoption of reduced graphene oxide for high performance applications.

10.
Phys Rev Lett ; 119(23): 231101, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286705

RESUMO

According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti,Pt)=[-1±9(stat)±9(syst)]×10^{-15} (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

11.
ACS Appl Mater Interfaces ; 7(22): 11939-47, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25993041

RESUMO

This paper outlines an improved design of inexpensive, wireless and battery free biosensors for in situ monitoring of food quality. This type of device has an additional advantage of being operated remotely. To make the device, a portion of an antenna of a passive 13.56 MHz radio frequency identification (RFID) tag was altered with a sensing element composed of conductive nanofillers/particles, a binding agent, and a polymer matrix. These novel RFID tags were exposed to biogenic amine putrescine, commonly used as a marker for food spoilage, and their response was monitored over time using a general-purpose network analyzer. The effect of conductive filler properties, including conductivity and morphology, and filler functionalization was investigated by preparing sensing composites containing carbon particles (CPs), multiwall carbon nanotubes (MWCNTs), and binding agent grafted-multiwall carbon nanotubes (g-MWCNTs), respectively. During exposure to putrescine, the amount of reflected waves, frequency at resonance, and quality factor of the novel RFID tags decreased in response. The use of MWCNTs reduced tag cutoff time (i.e., faster response time) as compared with the use of CPs, which highlighted the effectiveness of the conductive nanofiller morphology, while the addition of g-MWCNTs further accelerated the sensor response time as a result of localized binding on the conductive nanofiller surface. Microstructural investigation of the film morphology indicated a better dispersion of g-MWCNTs in the sensing composite as compared to MWCNTs and CPs, as well as a smoother texture of the surface of the resulting coating. These results demonstrated that grafting of the binding agent onto the conductive particles in the sensing composite is an effective way to further enhance the detection sensitivity of the RFID tag based sensor.


Assuntos
Técnicas Biossensoriais , Qualidade dos Alimentos , Nanotubos de Carbono/química , Dispositivo de Identificação por Radiofrequência , Análise de Alimentos , Humanos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...