Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3493, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684653

RESUMO

Extraterrestrial minerals on the surface of airless Solar System bodies undergo gradual alteration processes known as space weathering over long periods of time. The signatures of space weathering help us understand the phenomena occurring in the Solar System. However, meteorites rarely retain the signatures, making it impossible to study the space weathering processes precisely. Here, we examine samples retrieved from the asteroid Ryugu by the Hayabusa2 spacecraft and discover the presence of nonmagnetic framboids through electron holography measurements that can visualize magnetic flux. Magnetite particles, which normally provide a record of the nebular magnetic field, have lost their magnetic properties by reduction via a high-velocity (>5 km s-1) impact of a micrometeoroid with a diameter ranging from 2 to 20 µm after destruction of the parent body of Ryugu. Around these particles, thousands of metallic-iron nanoparticles with a vortex magnetic domain structure, which could have recorded a magnetic field in the impact event, are found. Through measuring the remanent magnetization of the iron nanoparticles, future studies are expected to elucidate the nature of the nebular/interplanetary magnetic fields after the termination of aqueous alteration in an asteroid.

2.
Microscopy (Oxf) ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549513

RESUMO

The charge state of supported metal catalysts is the key to understanding the elementary processes involved in catalytic reactions. However, high-precision charge analysis of the metal catalysts at the atomic level is experimentally challenging. To address this critical challenge, high-sensitivity electron holography has recently been successfully applied for precisely measuring the elementary charges on individual platinum nanoparticles supported on a titanium dioxide surface. In this review, we introduce the latest advancements of high-precision charge analysis and discuss mechanisms of charge transfer at the metal-support interface. The development of charge measurements is entering a new era, and charge analyses under conditions closer to practical working environments, such as real-time, real-space, and reactive gas environments, are expected to be realized in near future.

3.
Adv Mater ; 36(16): e2311737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219021

RESUMO

Topological magnetic (anti)skyrmions are robust string-like objects heralded as potential components in next-generation topological spintronics devices due to their low-energy manipulability via stimuli such as magnetic fields, heat, and electric/thermal current. While these 2D topological objects are widely studied, intrinsically 3D electron-spin real-space topology remains less explored despite its prevalence in bulky magnets. 2D-imaging studies reveal peculiar vortex-like contrast in the core regions of spin textures present in antiskyrmion-hosting thin plate magnets with S4 crystal symmetry, suggesting a more complex 3D real-space structure than the 2D model suggests. Here, holographic vector field electron tomography captures the 3D structure of antiskyrmions in a single-crystal, precision-doped (Fe0.63Ni0.3Pd0.07)3P (FNPP) lamellae at room temperature and zero field. These measurements reveal hybrid string-like solitons composed of skyrmions with topological number W = -1 on the lamellae's surfaces and an antiskyrmion (W = + 1) connecting them. High-resolution images uncover a Bloch point quadrupole (four magnetic (anti)monopoles that are undetectable in 2D imaging) which enables the observed lengthwise topological transitions. Numerical calculations corroborate the stability of hybrid strings over their conventional (anti)skyrmion counterparts. Hybrid strings result in topological tuning, a tunable topological Hall effect, and the suppression of skyrmion Hall motion, disrupting existing paradigms within spintronics.

4.
Adv Mater ; 36(1): e2306441, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712832

RESUMO

The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.

5.
Sci Rep ; 13(1): 14096, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644091

RESUMO

In the samples collected from the asteroid Ryugu, magnetite displays natural remanent magnetization due to nebular magnetic field, whereas contemporaneously grown iron sulfide does not display stable remanent magnetization. To clarify this counterintuitive feature, we observed their nanoscale magnetic domain structures using electron holography and found that framboidal magnetites have an external magnetic field of 300 A m-1, similar to the bulk value, and its magnetic stability was enhanced by interactions with neighboring magnetites, permitting a disk magnetic field to be recorded. Micrometer-sized pyrrhotite showed a multidomain magnetic structure that was unable to retain natural remanent magnetization over a long time due to short relaxation time of magnetic-domain-wall movement, whereas submicron-sized sulfides formed a nonmagnetic phase. These results show that both magnetite and sulfide could have formed simultaneously during the aqueous alteration in the parent body of the asteroid Ryugu.

6.
Microscopy (Oxf) ; 72(2): 65, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36737862
7.
Microscopy (Oxf) ; 72(2): 78-96, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36094805

RESUMO

With the invention of the aberration corrector in electron optics, the spatial resolution in electron microscopy has progressively improved and has now reached the sub-50-pm regime, and atomic-resolution electron microscopy has become a versatile tool for investigating the atomic structures in materials and devices. Furthermore, the phase resolution in electron microscopy also exhibits outstanding progress, and it has become possible to visualize electromagnetic fields at atomic dimensions, which strongly contributes to understanding the physical and chemical properties of materials. The electron microscopy society has grown with the improvements in spatial and phase resolutions, and hence, we must continuously develop new hardware, software and methodologies to boost these resolutions. Here, we review the historical progress of spatial and phase resolutions in electron microscopy, where we clarify the definition of these resolutions. We also discuss the future targets in electron microscopy.

8.
Microscopy (Oxf) ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236158

RESUMO

Electron holography provides quantitative phase information regarding the electromagnetic fields and the morphology of micro- to nano-scale samples. A phase image reconstructed numerically from an electron hologram sometimes includes phase residues, i.e. origins of unremovable phase discontinuities, which make it much more difficult to quantitatively analyze local phase values. We developed a method to remove the residues in a phase image by a combination of patching local areas of a hologram and denoising based on machine learning. The small patches for a hologram, which were generated using the spatial frequency information of the own fringe patterns, were pasted at each residue point by an algorithm based on sparse modeling. After successive phase reconstruction, the phase components with no dependency on the vicinity were filtered out by Gaussian process regression. We determined that the phase discontinuities that appeared around phase residues were removed and the phase distributions of an atomic resolution phase image of a Pt nanoparticle were sufficiently restored.

9.
Science ; 378(6616): 202-206, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227985

RESUMO

A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.

10.
Microscopy (Oxf) ; 70(6): 510-518, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34101814

RESUMO

An automated hologram acquisition system for big-data analysis and for improving the statistical precision of phase analysis has been upgraded with automated particle detection technology. The coordinates of objects in low-magnification images are automatically detected using zero-mean normalized cross-correlation with preselected reference images. In contrast with the conventional scanning acquisitions from the whole area of a microgrid and/or a thin specimen, the new method allows efficient data collections only from the desired fields of view including the particles. The acquisition time of the cubic/triangular nanoparticles that were observed was shortened by about one-fifty eighth that of the conventional scanning acquisition method because of efficient data collections. The developed technology can improve statistical precision in electron holography with shorter acquisition time and is applicable to the analysis of electromagnetic fields for various kinds of nanoparticles.

11.
Microscopy (Oxf) ; 70(5): 442-449, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730158

RESUMO

An image identification method was developed with the aid of a deep convolutional neural network (CNN) and applied to the analysis of inorganic particles using electron holography. Despite significant variation in the shapes of α-Fe2O3 particles that were observed by transmission electron microscopy, this CNN-based method could be used to identify isolated, spindle-shaped particles that were distinct from other particles that had undergone pairing and/or agglomeration. The averaging of images of these isolated particles provided a significant improvement in the phase analysis precision of the electron holography observations. This method is expected to be helpful in the analysis of weak electromagnetic fields generated by nanoparticles showing only small phase shifts.

12.
Microscopy (Oxf) ; 70(1): 39-46, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991687

RESUMO

Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.

13.
Microscopy (Oxf) ; 69(2): 132-139, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32115651

RESUMO

An automated acquisition system for collecting a large number of electron holograms, to improve the statistical precision of phase analysis, was developed. A technique for shifting the electron beam in combination with stage movement allows data to be acquired over a wide area of a TEM-specimen grid. Undesired drift in the hologram position, which may occur during the hologram acquisition, can be corrected in real time by automated detection of the interference-fringe region in an image. To demonstrate the usefulness of the developed automated hologram acquisition system, gold nanoparticles dispersed on a carbon foil were observed with a 1.2-MV atomic resolution holography electron microscope. The system could obtain 1024 holograms, which provided phase maps for more than 500 nanoparticles with a lateral resolution of 0.14 nm, in just 1 h. The observation results revealed an anomalous increase in mean inner potential for a particle size smaller than 4 nm. The developed automated hologram acquisition system can be applied to improve the precision of phase measurement by averaging many phase images, as demonstrated by single particle analysis for biological entities. Moreover, the system makes it possible to study electrostatic potential of catalysts and other functional nanoparticles at atomic resolution.

14.
Nano Lett ; 18(2): 929-933, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345472

RESUMO

To utilize magnetic skyrmions, nanoscale vortex-like magnetic structures, experimental elucidation of their dynamics against current application in various circumstances such as in confined structure and mixture of different magnetic phases is indispensable. Here, we investigate the current-induced dynamics of the coexistence state of magnetic skyrmions and helical magnetic structure in a thin plate of B20-type helimagnet FeGe in terms of in situ real-space observation using Lorentz transmission electron microscopy. Current pulses with various heights and widths were applied, and the change of the magnetic domain distribution was analyzed using a machine-learning technique. The observed average driving direction of the two-magnetic-state domain boundary is opposite to the applied electric current, indicating ferromagnetic s-d exchange coupling in the spin-transfer torque mechanism. The evaluated driving distance tends to increase with increasing the pulse duration time, current density (>1 × 109 A/m2), and sample temperature, providing valuable information about hitherto unknown current-induced dynamics of the skyrmion-lattice ensemble.

15.
Sci Rep ; 7(1): 16598, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209064

RESUMO

Nanometre-scale magnetic field distributions in materials such as those at oxide interfaces, in thin layers of spintronics devices, and at boundaries in magnets have become important research targets in materials science and applied physics. Electron holography has advantages in nanometric magnetic field observations, and the realization of aberration correctors has improved its spatial resolution. Here we show the subnanometre magnetic field observations inside a sample at 0.67-nm resolution achieved by an aberration-corrected 1.2-MV holography electron microscope with a pulse magnetization system. A magnetization reduction due to intermixing in a CoFeB/Ta multilayer is analyzed by observing magnetic field and electrostatic potential distributions simultaneously. Our results demonstrate that high-voltage electron holography can be widely applied to pin-point magnetization analysis with structural and composition information in physics, chemistry, and materials science.

16.
Microscopy (Oxf) ; 66(3): 167-171, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100660

RESUMO

Charging of a SiO2 particle induced by electron illumination was investigated by changing the illuminated area of the particle and its support film through control of the position of the mask plate inserted in a transmission electron microscope illumination system. The electric fields around the charged SiO2 particle were analyzed using electron holography. The amount of charge was evaluated quantitatively by comparing the reconstructed phase images with the simulated phase images. When the support film was not covered against the incident electron beam, secondary electrons emitted from the conductive support film were attracted to the charged particle, resulting in particle discharge. In contrast, when the support film was completely covered, secondary electrons were not emitted from the film, so that the particle remained positively charged.

17.
Adv Mater ; 29(25)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859812

RESUMO

Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa2 Cu3 O7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography.

18.
Nano Lett ; 15(8): 5438-42, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26237493

RESUMO

Three-dimensional forms of skyrmion aggregate, such as a cubic lattice of skyrmions, are anticipated to exist, yet their direct observations remain elusive. Here, we report real-space observations of spin configurations of the skyrmion-antiskyrmion cubic-lattice in MnGe with a very short period (∼3 nm) and hence endowed with the largest skyrmion number density. The skyrmion lattices parallel to the {100} atomic lattices are directly observed using high-resolution Lorentz transmission electron microscopes, simultaneously with underlying atomic-lattice fringes.

19.
Nano Lett ; 15(2): 1309-14, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25594686

RESUMO

Electron holographic vector field electron tomography visualized three-dimensional (3D) magnetic vortices in stacked ferromagnetic discs in a nanoscale pillar. A special holder with two sample rotation axes, both without missing wedges, was used to reduce artifacts in the reconstructed 3D magnetic vectors. A 1 MV holography electron microscope was used to precisely measure the magnetic phase shifts. Comparison of the observed 3D magnetic field vector distributions in the magnetic vortex cores with the results of micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation showed that the proposed technique is well suited for direct 3D visualization of the spin configurations in magnetic materials and spintronics devices.

20.
Appl Phys Lett ; 105(18): 183102, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25422526

RESUMO

This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...