Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Clin Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775859

RESUMO

PURPOSE: The genetic intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN: To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directsMSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. RESULTS: This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-seq OS dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS: Our study quantifies OS differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.

2.
Sci Rep ; 14(1): 6082, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480759

RESUMO

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFkB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/terapia , Redes Reguladoras de Genes , Imunoterapia
3.
Sci Rep ; 14(1): 1111, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212659

RESUMO

As a generalization of the optimal mass transport (OMT) approach of Benamou and Brenier's, the regularized optimal mass transport (rOMT) formulates a transport problem from an initial mass configuration to another with the optimality defined by the total kinetic energy, but subject to an advection-diffusion constraint equation. Both rOMT and the Benamou and Brenier's formulation require the total initial and final masses to be equal; mass is preserved during the entire transport process. However, for many applications, e.g., in dynamic image tracking, this constraint is rarely if ever satisfied. Therefore, we propose to employ an unbalanced version of rOMT to remove this constraint together with a detailed numerical solution procedure and applications to analyzing fluid flows in the brain.


Assuntos
Encéfalo , Transporte Biológico , Difusão
4.
Sci Rep ; 14(1): 488, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177639

RESUMO

Network properties account for the complex relationship between genes, making it easier to identify complex patterns in their interactions. In this work, we leveraged these network properties for dual purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best concordance with histological subtypes, validated against three state-of-the-art methods. Second, to identify molecular targets that would be missed by more conventional methods of analysis, we applied a novel unsupervised method to cluster gene interactomes represented as networks in pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on a discrete notion of curvature. This provides a measure of the functional association among genes in the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we found non-trivial gene associations not previously identified.


Assuntos
Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma de Ewing/patologia , Proteína EWS de Ligação a RNA/metabolismo , Neoplasias de Tecidos Moles/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica c-fli-1/genética , Linhagem Celular Tumoral
5.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090606

RESUMO

Cancer transcriptional patterns exhibit both shared and unique features across diverse cancer types, but whether these patterns are sufficient to characterize the full breadth of tumor phenotype heterogeneity remains an open question. We hypothesized that cancer transcriptional diversity mirrors patterns in normal tissues optimized for distinct functional tasks. Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal tissue patterns and variations across a broad spectrum of malignancies. We show that differential enrichment of these signatures correlates with key tumor characteristics, including overall patient survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we show that in HR+/HER2-breast cancers, metastatic tumors adopt transcriptomic signatures consistent with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue transcriptomic characteristics as a component of both malignant progression and drug response. This quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and could potentially help manage individual patients.

6.
IEEE Trans Med Imaging ; 43(3): 916-927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874704

RESUMO

Directionally sensitive radiomic features including the histogram of oriented gradient (HOG) have been shown to provide objective and quantitative measures for predicting disease outcomes in multiple cancers. However, radiomic features are sensitive to imaging variabilities including acquisition differences, imaging artifacts and noise, making them impractical for using in the clinic to inform patient care. We treat the problem of extracting robust local directionality features by mapping via optimal transport a given local image patch to an iso-intense patch of its mean. We decompose the transport map into sub-work costs each transporting in different directions. To test our approach, we evaluated the ability of the proposed approach to quantify tumor heterogeneity from magnetic resonance imaging (MRI) scans of brain glioblastoma multiforme, computed tomography (CT) scans of head and neck squamous cell carcinoma as well as longitudinal CT scans in lung cancer patients treated with immunotherapy. By considering the entropy difference of the extracted local directionality within tumor regions, we found that patients with higher entropy in their images, had significantly worse overall survival for all three datasets, which indicates that tumors that have images exhibiting flows in many directions may be more malignant. This may seem to reflect high tumor histologic grade or disorganization. Furthermore, by comparing the changes in entropy longitudinally using two imaging time points, we found patients with reduction in entropy from baseline CT are associated with longer overall survival (hazard ratio = 1.95, 95% confidence interval of 1.4-2.8, p = 1.65e-5). The proposed method provides a robust, training free approach to quantify the local directionality contained in images.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética
7.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045365

RESUMO

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFKB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.

9.
Blood Cancer J ; 13(1): 175, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030619

RESUMO

The plasma cell cancer multiple myeloma (MM) varies significantly in genomic characteristics, response to therapy, and long-term prognosis. To investigate global interactions in MM, we combined a known protein interaction network with a large clinically annotated MM dataset. We hypothesized that an unbiased network analysis method based on large-scale similarities in gene expression, copy number aberration, and protein interactions may provide novel biological insights. Applying a novel measure of network robustness, Ollivier-Ricci Curvature, we examined patterns in the RNA-Seq gene expression and CNA data and how they relate to clinical outcomes. Hierarchical clustering using ORC differentiated high-risk subtypes with low progression free survival. Differential gene expression analysis defined 118 genes with significantly aberrant expression. These genes, while not previously associated with MM, were associated with DNA repair, apoptosis, and the immune system. Univariate analysis identified 8/118 to be prognostic genes; all associated with the immune system. A network topology analysis identified both hub and bridge genes which connect known genes of biological significance of MM. Taken together, gene interaction network analysis in MM uses a novel method of global assessment to demonstrate complex immune dysregulation associated with shorter survival.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Prognóstico , Mapas de Interação de Proteínas , Genômica/métodos , Apoptose
10.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745374

RESUMO

The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.

11.
Front Genet ; 14: 1161047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529777

RESUMO

Drug-induced liver injury (DILI) is an adverse hepatic drug reaction that can potentially lead to life-threatening liver failure. Previously published work in the scientific literature on DILI has provided valuable insights for the understanding of hepatotoxicity as well as drug development. However, the manual search of scientific literature in PubMed is laborious and time-consuming. Natural language processing (NLP) techniques along with artificial intelligence/machine learning approaches may allow for automatic processing in identifying DILI-related literature, but useful methods are yet to be demonstrated. To address this issue, we have developed an integrated NLP/machine learning classification model to identify DILI-related literature using only paper titles and abstracts. For prediction modeling, we used 14,203 publications provided by the Critical Assessment of Massive Data Analysis (CAMDA) challenge, employing word vectorization techniques in NLP in conjunction with machine learning methods. Classification modeling was performed using 2/3 of the data for training and the remainder for test in internal validation. The best performance was achieved using a linear support vector machine (SVM) model on the combined vectors derived from term frequency-inverse document frequency (TF-IDF) and Word2Vec, resulting in an accuracy of 95.0% and an F1-score of 95.0%. The final SVM model constructed from all 14,203 publications was tested on independent datasets, resulting in accuracies of 92.5%, 96.3%, and 98.3%, and F1-scores of 93.5%, 86.1%, and 75.6% for three test sets (T1-T3). Furthermore, the SVM model was tested on four external validation sets (V1-V4), resulting in accuracies of 92.0%, 96.2%, 98.3%, and 93.1%, and F1-scores of 92.4%, 82.9%, 75.0%, and 93.3%.

12.
Comput Biol Med ; 163: 107117, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329617

RESUMO

The advance of sequencing technologies has enabled a thorough molecular characterization of the genome in human cancers. To improve patient prognosis predictions and subsequent treatment strategies, it is imperative to develop advanced computational methods to analyze large-scale, high-dimensional genomic data. However, traditional machine learning methods face a challenge in handling the high-dimensional, low-sample size problem that is shown in most genomic data sets. To address this, our group has developed geometric network analysis techniques on multi-omics data in connection with prior biological knowledge derived from protein-protein interactions (PPIs) or pathways. Geometric features obtained from the genomic network, such as Ollivier-Ricci curvature and the invariant measure of the associated Markov chain, have been shown to be predictive of survival outcomes in various cancers. In this study, we propose a novel supervised deep learning method called geometric graph neural network (GGNN) that incorporates such geometric features into deep learning for enhanced predictive power and interpretability. More specifically, we utilize a state-of-the-art graph neural network with sparse connections between the hidden layers based on known biology of the PPI network and pathway information. Geometric features along with multi-omics data are then incorporated into the corresponding layers. The proposed approach utilizes a local-global principle in such a manner that highly predictive features are selected at the front layers and fed directly to the last layer for multivariable Cox proportional-hazards regression modeling. The method was applied to multi-omics data from the CoMMpass study of multiple myeloma and ten major cancers in The Cancer Genome Atlas (TCGA). In most experiments, our method showed superior predictive performance compared to other alternative methods.


Assuntos
Aprendizado Profundo , Multiômica , Neoplasias , Humanos , Genômica , Neoplasias/mortalidade , Prognóstico , Sobrevida , Multiômica/métodos
13.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37159262

RESUMO

Respiration can positively influence cerebrospinal fluid (CSF) flow in the brain, yet its effects on central nervous system (CNS) fluid homeostasis, including waste clearance function via glymphatic and meningeal lymphatic systems, remain unclear. Here, we investigated the effect of supporting respiratory function via continuous positive airway pressure (CPAP) on glymphatic-lymphatic function in spontaneously breathing anesthetized rodents. To do this, we used a systems approach combining engineering, MRI, computational fluid dynamics analysis, and physiological testing. We first designed a nasal CPAP device for use in the rat and demonstrated that it functioned similarly to clinical devices, as evidenced by its ability to open the upper airway, augment end-expiratory lung volume, and improve arterial oxygenation. We further showed that CPAP increased CSF flow speed at the skull base and augmented glymphatic transport regionally. The CPAP-induced augmented CSF flow speed was associated with an increase in intracranial pressure (ICP), including the ICP waveform pulse amplitude. We suggest that the augmented pulse amplitude with CPAP underlies the increase in CSF bulk flow and glymphatic transport. Our results provide insights into the functional crosstalk at the pulmonary-CSF interface and suggest that CPAP might have therapeutic benefit for sustaining glymphatic-lymphatic function.


Assuntos
Sistema Nervoso Central , Pressão Positiva Contínua nas Vias Aéreas , Ratos , Animais , Encéfalo , Respiração
14.
Radiother Oncol ; 185: 109723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244355

RESUMO

BACKGROUND AND PURPOSE: Late radiation-induced hematuria can develop in prostate cancer patients undergoing radiotherapy and can negatively impact the quality-of-life of survivors. If a genetic component of risk could be modeled, this could potentially be the basis for modifying treatment for high-risk patients. We therefore investigated whether a previously developed machine learning-based modeling method using genome-wide common single nucleotide polymorphisms (SNPs) can stratify patients in terms of the risk of radiation-induced hematuria. MATERIALS AND METHODS: We applied a two-step machine learning algorithm that we previously developed for genome-wide association studies called pre-conditioned random forest regression (PRFR). PRFR includes a pre-conditioning step, producing adjusted outcomes, followed by random forest regression modeling. Data was from germline genome-wide SNPs for 668 prostate cancer patients treated with radiotherapy. The cohort was stratified only once, at the outset of the modeling process, into two groups: a training set (2/3 of samples) for modeling and a validation set (1/3 of samples). Post-modeling bioinformatics analysis was conducted to identify biological correlates plausibly associated with the risk of hematuria. RESULTS: The PRFR method achieved significantly better predictive performance compared to other alternative methods (all p < 0.05). The odds ratio between the high and low risk groups, each of which consisted of 1/3 of samples in the validation set, was 2.87 (p = 0.029), implying a clinically useful level of discrimination. Bioinformatics analysis identified six key proteins encoded by CTNND2, GSK3B, KCNQ2, NEDD4L, PRKAA1, and TXNL1 genes as well as four statistically significant biological process networks previously shown to be associated with the bladder and urinary tract. CONCLUSION: The risk of hematuria is significantly dependent on common genetic variants. The PRFR algorithm resulted in a stratification of prostate cancer patients at differential risk levels of post-radiotherapy hematuria. Bioinformatics analysis identified important biological processes involved in radiation-induced hematuria.


Assuntos
Hematúria , Neoplasias da Próstata , Masculino , Humanos , Hematúria/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Bexiga Urinária , Células Germinativas , Polimorfismo de Nucleotídeo Único
15.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
16.
IEEE Trans Vis Comput Graph ; 29(3): 1651-1663, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780328

RESUMO

We present a novel approach for volume exploration that is versatile yet effective in isolating semantic structures in both noisy and clean data. Specifically, we describe a hierarchical active contours approach based on Bhattacharyya gradient flow which is easier to control, robust to noise, and can incorporate various types of statistical information to drive an edge-agnostic exploration process. To facilitate a time-bound user-driven volume exploration process that is applicable to a wide variety of data sources, we present an efficient multi-GPU implementation that (1) is approximately 400 times faster than a single thread CPU implementation, (2) allows hierarchical exploration of 2D and 3D images, (3) supports customization through multidimensional attribute spaces, and (4) is applicable to a variety of data sources and semantic structures. The exploration system follows a 2-step process. It first applies active contours to isolate semantically meaningful subsets of the volume. It then applies transfer functions to the isolated regions locally to produce clear and clutter-free visualizations. We show the effectiveness of our approach in isolating and visualizing structures-of-interest without needing any specialized segmentation methods on a variety of data sources, including 3D optical microscopy, multi-channel optical volumes, abdominal and chest CT, micro-CT, MRI, simulation, and synthetic data. We also gathered feedback from a medical trainee regarding the usefulness of our approach and discussion on potential applications in clinical workflows.

17.
Cell Death Differ ; 30(3): 660-672, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36182991

RESUMO

Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, we analyze the time evolution of p21 and p53 from two single cell datasets of retinal pigment epithelial cells exposed to several levels of radiation, and in particular, the effect of radiation on cell cycle arrest. Employing various quantification methods from signal processing, we show how p21 levels, and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how frequently these mitosis events are likely to occur. We observed that single cells exposed to the same dose of DNA damage exhibit heterogeneity in cellular outcomes and that the frequency of cell division is a more accurate monitor of cell damage rather than just radiation level. Finally, we show how heterogeneity in DNA damage signaling is manifested early in the response to radiation exposure level and has potential to predict long-term fate.


Assuntos
Mitose , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Dano ao DNA
18.
Front Psychiatry ; 13: 1026279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353577

RESUMO

Diffusion tensor imaging (DTI) has been used as an outcome measure in clinical trials for several psychiatric disorders but has rarely been explored in autism clinical trials. This is despite a large body of research suggesting altered white matter structure in autistic individuals. The current study is a secondary analysis of changes in white matter connectivity from a double-blind placebo-control trial of a single intravenous cord blood infusion in 2-7-year-old autistic children (1). Both clinical assessments and DTI were collected at baseline and 6 months after infusion. This study used two measures of white matter connectivity: change in node-to-node connectivity as measured through DTI streamlines and a novel measure of feedback network connectivity, Ollivier-Ricci curvature (ORC). ORC is a network measure which considers both local and global connectivity to assess the robustness of any given pathway. Using both the streamline and ORC analyses, we found reorganization of white matter pathways in predominantly frontal and temporal brain networks in autistic children who received umbilical cord blood treatment versus those who received a placebo. By looking at changes in network robustness, this study examined not only the direct, physical changes in connectivity, but changes with respect to the whole brain network. Together, these results suggest the use of DTI and ORC should be further explored as a potential biomarker in future autism clinical trials. These results, however, should not be interpreted as evidence for the efficacy of cord blood for improving clinical outcomes in autism. This paper presents a secondary analysis using data from a clinical trial that was prospectively registered with ClinicalTrials.gov(NCT02847182).

19.
Comput Med Imaging Graph ; 102: 102129, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308869

RESUMO

The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is considered for each classification label and is performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman's rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed spatial features' added value, we compared the performance of the proposed classification pipeline with other SVM-based classifiers that account for different texture features, namely: statistical features only, optimized spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed technique, which accounts for the optimized spatial texture feature with Wasserstein metric, shows great potential in classifying new COVID CT images that the algorithm has not seen in the training step. The MATLAB code of the proposed classification pipeline is made available. It can be used to find the best reference samples in other data cohorts, which can then be employed to build different prediction models.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/diagnóstico por imagem , Máquina de Vetores de Suporte , Algoritmos , Tomografia Computadorizada por Raios X/métodos
20.
BMC Bioinformatics ; 23(1): 449, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309638

RESUMO

BACKGROUND: Compositional systems, represented as parts of some whole, are ubiquitous. They encompass the abundances of proteins in a cell, the distribution of organisms in nature, and the stoichiometry of the most basic chemical reactions. Thus, a central goal is to understand how such processes emerge from the behaviors of their components and their pairwise interactions. Such a study, however, is challenging for two key reasons. Firstly, such systems are complex and depend, often stochastically, on their constituent parts. Secondly, the data lie on a simplex which influences their correlations. RESULTS: To resolve both of these issues, we provide a general and data-driven modeling tool for compositional systems called Compositional Maximum Entropy (CME). By integrating the prior geometric structure of compositions with sample-specific information, CME infers the underlying multivariate relationships between the constituent components. We provide two proofs of principle. First, we measure the relative abundances of different bacteria and infer how they interact. Second, we show that our method outperforms a common alternative for the extraction of gene-gene interactions in triple-negative breast cancer. CONCLUSIONS: CME provides novel and biologically-intuitive insights and is promising as a comprehensive quantitative framework for compositional data.


Assuntos
Bactérias , Proteínas , Entropia , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...