Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318795

RESUMO

Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.

2.
Science ; 375(6587): 1422-1426, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324292

RESUMO

Colloidal nanocrystals of metals, semiconductors, and other functional materials can self-assemble into long-range ordered crystalline and quasicrystalline phases, but insulating organic surface ligands prevent the development of collective electronic states in ordered nanocrystal assemblies. We reversibly self-assembled colloidal nanocrystals of gold, platinum, nickel, lead sulfide, and lead selenide with conductive inorganic ligands into supercrystals exhibiting optical and electronic properties consistent with strong electronic coupling between the constituent nanocrystals. The phase behavior of charge-stabilized nanocrystals can be rationalized and navigated with phase diagrams computed for particles interacting through short-range attractive potentials. By finely tuning interparticle interactions, the assembly was directed either through one-step nucleation or nonclassical two-step nucleation pathways. In the latter case, the nucleation was preceded by the formation of two metastable colloidal fluids.

3.
Sci Adv ; 6(32): eabb6874, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32821841

RESUMO

Many important applications in biochemistry, materials science, and catalysis sit squarely at the interface between quantum and statistical mechanics: Coherent evolution is interrupted by discrete events, such as binding of a substrate or isomerization. Theoretical models for such dynamics usually truncate the incorporation of these events to the linear response limit, thus requiring small step sizes. Here, we completely reassess the foundations of chemical exchange models and redesign a master equation treatment for exchange accurate to infinite order in perturbation theory. The net result is an astonishingly simple correction to the traditional picture, which vastly improves convergence with no increased computational cost. We demonstrate that this approach accurately and efficiently extracts physical parameters from complex experimental data, such as coherent hyperpolarization dynamics in magnetic resonance, and is applicable to a wide range of other systems.

4.
J Magn Reson ; 307: 106577, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454701

RESUMO

Signal Amplification By Reversible Exchange, or SABRE, uses the singlet-order of parahydrogen to generate hyperpolarized signals on target nuclei, bypassing the limitations of traditional magnetic resonance. Experiments performed directly in the magnet provide a route to generate large magnetizations continuously without having to field-cycle the sample. For heteronuclear SABRE, these high-field methods have been restricted to the few SABRE complexes that exhibit efficient exchange with symmetric ligand environments as co-ligands induce chemical shift differences between the parahydrogen-derived hydrides, destroying the hyperpolarized spin order. Through careful consideration of the underlying spin physics, we introduce 1H decoupled LIGHT-SABRE pulse sequence variants which bypasses this limitation, drastically expanding the scope of heteronuclear SABRE at high field.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Catálise , Campos Eletromagnéticos , Hidrogênio/química , Ligantes , Luz
5.
J Chem Phys ; 151(4): 044201, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370556

RESUMO

Signal Amplification By Reversible Exchange (SABRE) and its heteronuclear variant SABRE in SHield Enables Alignment Transfer to Heteronuclei create large nuclear magnetization in target ligands, exploiting level crossings in an iridium catalyst that transiently binds both the ligands and parahydrogen. This requires a specific, small magnetic field to match Zeeman splittings to scalar couplings. Here, we explore a different strategy, direct creation of heteronuclear singlet states in the target ligands, which produces enhanced signals at other field strengths, including zero field. We also show that pulsed methods (including pulsed field nulling) coherently and selectively pump such singlets, affording a significant enhancement on the resulting hyperpolarization.

6.
Nat Commun ; 10(1): 395, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674881

RESUMO

Signal amplification by reversible exchange (SABRE) is an efficient method to hyperpolarize spin-1/2 nuclei and affords signals that are orders of magnitude larger than those obtained by thermal spin polarization. Direct polarization transfer to heteronuclei such as 13C or 15N has been optimized at static microTesla fields or using coherence transfer at high field, and relies on steady state exchange with the polarization transfer catalyst dictated by chemical kinetics. Here we demonstrate that pulsing the excitation field induces complex coherent polarization transfer dynamics, but in fact pulsing with a roughly 1% duty cycle on resonance produces more magnetization than constantly being on resonance. We develop a Monte Carlo simulation approach to unravel the coherent polarization dynamics, show that existing SABRE approaches are quite inefficient in use of para-hydrogen order, and present improved sequences for efficient hyperpolarization.


Assuntos
Hidrogênio/química , Espectroscopia de Ressonância Magnética , Piridinas/química , Catálise , Cinética , Campos Magnéticos , Modelos Moleculares , Modelos Teóricos , Isótopos de Nitrogênio/química
7.
Chemphyschem ; 18(12): 1493-1498, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28517362

RESUMO

Nuclear spin hyperpolarization techniques are revolutionizing the field of 13 C molecular MRI. While dissolution dynamic nuclear polarization (d-DNP) is currently the leading technique, it is generally slow (requiring ≈1 h) and costly (≈$USD106 ). As a consequence of carbon's central place in biochemistry, tremendous progress using 13 C d-DNP bioimaging has been demonstrated to date including a number of clinical trials. Despite numerous attempts to develop alternatives to d-DNP, the competing methods have faced significant translational challenges. Efficient hyperpolarization of 15 N, 31 P, and other heteronuclei using signal amplification by reversible exchange (SABRE) has been reported in 2015, but extension of this technique to 13 C has proven to be challenging. Here, we present efficient hyperpolarization of 13 C nuclei using micro-Tesla SABRE. Up to ca. 6700-fold enhancement of nuclear spin polarization at 8.45 T is achieved within seconds, corresponding to P13C ≈4.4 % using 50 % parahydrogen (P13C >14 % would be feasible using more potent ≈100 % parahydrogen). Importantly, the 13 C polarization achieved via SABRE strongly depends not only upon spin-lattice relaxation, but also upon the presence of 15 N (I=1/2) versus quadrupolar 14 N (I=1) spins in the site binding the hexacoordinate Ir atom of the catalytic complex. We show that different 13 C nuclei in the test molecular frameworks-pyridine and acetonitrile-can be hyperpolarized, including 13 C sites up to five chemical bonds away from the exchangeable hydrides. The presented approach is highly scalable and can be applied to a rapidly growing number of biomolecules amendable to micro-Tesla SABRE.


Assuntos
Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Piridinas/química , Isótopos de Carbono , Isótopos de Nitrogênio , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...