Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt A): 825-835, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619261

RESUMO

During automotive engine operation, water may contaminate engine oil, inhibiting its role in maintaining safe engine operation. In many cases, engine oil must be capable of emulsifying any water contamination to avoid such problems. This study focuses on the impact of small molecule surfactant concentration structure and concentration in emulsions comprised of engine oil, water, and E85 fuel to understand the effects on emulsion stability and formulation optimization. Three small molecule surfacatants were tested; glycerol dioleate (GDO), glyceryl monooleate (GMO), and oleamide (OA). Three characterization methods were used to investigate their effects; the current state of the art, ASTM D7563, microscopy, and diffusing wave spectroscopy (DWS). We found that DWS could yield insights into mechanisms of emulsion stability that are otherwise inaccessible through other experimental techniques. Specifically, utilizing DWS, we are able to extract specific emulsion stability mechanisms associated directly with molecular features for the three surfactants examined.

2.
ACS Appl Mater Interfaces ; 13(5): 6870-6878, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33525863

RESUMO

To fully realize the potential of microfluidic platforms as useful diagnostic tools, the devices must be sufficiently portable that they function at the point-of-care, as well as remote and resource-poor locations. Using both modeling and experiments, here we develop a standalone fluidic device that is driven by light and operates without the need for external electrical or mechanical pumps. The light initiates a photochemical reaction in the solution; the release of chemical energy from the reaction is transduced into the spontaneous motion of the surrounding fluid. The generated flow is driven by two simultaneously occurring mechanisms: solutal buoyancy that controls the motion of the bulk fluid and diffusioosmosis that regulates motion near the bottom of the chamber. Consequently, the bulk and surface fluid flows can be directed independently of one another. We demonstrate that this exceptional degree of spatiotemporal control provides a new method for autonomously transporting different-sized particles in opposite directions within the chamber. Thus, one device can be used to both separate the particles and drive them to different locations for further processing or analysis. This property is particularly useful for analyzing fluids that contain multiple contaminants or disease agents. Because this system relies on intrinsic hydrodynamic interactions initiated by a portable, small-scale source of light, the device provides the desired level of mobility vital for the next generation of functional fluidic platforms.

3.
Angew Chem Int Ed Engl ; 58(8): 2295-2299, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548990

RESUMO

The field of active matter holds promise for applications in particle assembly, cargo and drug delivery, and sensing. In pursuit of these capabilities, researchers have produced a suite of nanomotors, fluid pumps, and particle assembly strategies. Although promising, there are many challenges, especially for mechanisms that rely on chemical propulsion. One way to circumvent these issues is by the use of external energy sources. Herein, we propose a method of using freely suspended nanoparticles to generate fluid pumping towards desired point sources. The pumping rates are dependent on particle concentration and light intensity, making it highly controllable. Using these directed flows, we further demonstrate the ability to reversibly construct and move colloidal crystals.

4.
Nano Lett ; 15(12): 8311-5, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26587897

RESUMO

Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.


Assuntos
Enzimas/química , Materiais Biocompatíveis , Catálise , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA