Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1941, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732338

RESUMO

Cells are consistently subjected to wounding by physical or chemical damages from the external environment. We previously showed that a local wound of the cell membrane modulates the polarity of cell migration and the wounded cells escape from the wound site in Dictyostelium. Here, we examined effects of wounds on dividing cells. When the cell membrane at the cleavage furrow during cytokinesis was locally wounded using laserporation, furrow constriction was significantly accelerated. Neither myosin II nor cortexillins contributed to the acceleration, because the acceleration was not hindered in mutant cells deficient in these proteins. When the cell membrane outside the furrow was wounded, the furrow constriction was not accelerated. Instead, the wounded-daughter half became smaller and the unwounded half became larger, resulting in an asymmetrical cell division. These phenomena occurred independently of wound repair. When cells in anaphase were wounded at the presumptive polar region, about 30% of the wounded cells changed the orientation of the division axis. From these observations, we concluded that dividing cells also escape from the wound site. The wound experiments on dividing cells also provide new insights into the mechanism of cytokinesis and cell polarity establishment.


Assuntos
Dictyostelium , Divisão Celular , Citocinese , Membrana Celular , Movimento Celular
2.
Cells ; 11(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36231128

RESUMO

The repair of wounded cell membranes is essential for cell survival. Upon wounding, actin transiently accumulates at the wound site. The loss of actin accumulation leads to cell death. The mechanism by which actin accumulates at the wound site, the types of actin-related proteins participating in the actin remodeling, and their signaling pathways are unclear. We firstly examined how actin accumulates at a wound site in Dictyostelium cells. Actin assembled de novo at the wound site, independent of cortical flow. Next, we searched for actin- and signal-related proteins targeting the wound site. Fourteen of the examined proteins transiently accumulated at different times. Thirdly, we performed functional analyses using gene knockout mutants or specific inhibitors. Rac, WASP, formin, the Arp2/3 complex, profilin, and coronin contribute to the actin dynamics. Finally, we found that multiple signaling pathways related to TORC2, the Elmo/Doc complex, PIP2-derived products, PLA2, and calmodulin are involved in the actin dynamics for wound repair.


Assuntos
Actinas , Dictyostelium , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Calmodulina/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Forminas , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfolipases A2/metabolismo , Profilinas/genética , Profilinas/metabolismo , Transdução de Sinais
3.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067877

RESUMO

Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.


Assuntos
Divisão Celular , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Protozoários/metabolismo , Cicatrização , Cálcio/metabolismo , Sinalização do Cálcio , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Cinética , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Miosina Tipo II/genética , Proteínas de Protozoários/genética , Imagem com Lapso de Tempo
4.
Cells ; 9(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340342

RESUMO

Wound repair of cell membrane is a vital physiological phenomenon. We examined wound repair in Dictyostelium cells by using a laserporation, which we recently invented. We examined the influx of fluorescent dyes from the external medium and monitored the cytosolic Ca2+ after wounding. The influx of Ca2+ through the wound pore was essential for wound repair. Annexin and ESCRT components accumulated at the wound site upon wounding as previously described in animal cells, but these were not essential for wound repair in Dictyostelium cells. We discovered that calmodulin accumulated at the wound site upon wounding, which was essential for wound repair. The membrane accumulated at the wound site to plug the wound pore by two-steps, depending on Ca2+ influx and calmodulin. From several lines of evidence, the membrane plug was derived from de novo generated vesicles at the wound site. Actin filaments also accumulated at the wound site, depending on Ca2+ influx and calmodulin. Actin accumulation was essential for wound repair, but microtubules were not essential. A molecular mechanism of wound repair will be discussed.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , Dictyostelium/metabolismo , Cicatrização , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...