Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0118123, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750685

RESUMO

Rhinovirus (RV) is the leading pathogen causing childhood wheezing, with rhinovirus C (RV-C) species reported to cause asthma exacerbation. Allele A of single-nucleotide polymorphism (SNP) CDHR3_rs6967330 upregulates epithelial expression of RV-C receptors which results in more severe asthma exacerbations in children. Nevertheless, there are limited data on interactions between CDHR3 variants and their impact on severity of RV-related pediatric respiratory tract infections (RTIs). Medical records of RV-related RTIs in children aged below 18 years who were hospitalized in two public hospitals in 2015-2016 were independently reviewed by two paediatricians. Archived nasopharyngeal aspirates were retrieved for RV detection and sequencing as well as CDHR3 genotyping. HaploView v.5.0 and generalized multifactor dimensionality reduction (GMDR) analysis were employed for haplotypic assignment and gene-environment interaction analyses. Among 1019 studied cases, our results confirmed the relationship between RV-C species and more severe RTIs. Besides the top risk variant rs6967330-A, we identified rs140154310-T to be associated with RV-C susceptibility under the additive model [odds ratio (OR) 2.53, 95% CI 1.15-5.56; P = 0.021]. Rs140154310 was associated with wheezing illness (OR 2.38, 95% CI 1.12-5.04; P = 0.024), with such association being stronger in subjects who wheezed due to RV-C infections (OR 2.71, 95% CI 1.32-5.58; P = 0.007). Haplotype GAG constructed from rs4730125, rs6967330, and rs73195665 was associated with increased risk of RV-C infection (OR 1.71, 95% CI 1.11-2.65; P = 0.016) and oxygen supplementation (OR 1.93, 95% CI 1.13-3.30; P = 0.016). GMDR analyses revealed epistatic interaction between rs140154310 and rs6967330 of CDHR3 for RV-C infection (P = 0.001), RV-C-associated lower RTI (P = 0.004), and RV-C-associated wheeze (P = 0.007). There was synergistic gene-environmental interaction between rs3887998 and RV-C for more severe clinical outcomes (P < 0.001). To conclude, rs140154310-T is another risk variant for RV-C susceptibility and more severe RTIs. Synergistic epistatic interaction is found between CDHR3 SNPs and RV-C for RTI severity, which is likely mediated by susceptibility to RV-C. Haplotypic analysis and GMDR should be included in identifying prediction models of CDHR3 for childhood asthma and RTIs. IMPORTANCE This case-control study investigated the interaction between CDHR3 genotypes and rhinovirus (RV) species on disease severity in Hong Kong children hospitalized for respiratory tract infection (RTI). There were synergistic effects between RV-C and CDHR3 SNPs for RTI severity, which was mainly driven by RV-C. Specifically, rs6967330 and rs140154310 alone and their epistatic interaction were associated with RV-C-related and severe RTIs in our subjects. Therefore, genotyping of CDHR3 SNPs may help physicians formulate prediction models for severity of RV-associated RTIs.

2.
Curr Res Microb Sci ; 3: 100147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909608

RESUMO

Background: Influenza virus (IV) and the rhinovirus (RV) are the two most common circulating respiratory viruses circulating. Natural viral interference has been suggested between them. The effect of such at the population level has been described in temperate region, while its effect at the individual and cellular levels warrants further validation. In this study, we described the respiratory virus epidemiology and the co-infection landscape in the hospitalized population and investigated the distinct molecular pathways involved in the inhibition of virus replication. Methods: Nasopharyngeal aspirates (NPAs) collected from patients during 2015 to 2019 were examined for the presence of respiratory viruses. The correlation of the monthly prevalence between all the tested respiratory viruses, the co-infection rate and the temporal interference of RV and IV were tested. The viral interference was validated in vitro by conducting sequential RV and IV infections in the well-differentiated primary human airway epithelial cells. The contributing molecular pathways were determined by transcriptome analysis. Findings: A total of 112,926 NPAs were evaluated, and the Enterovirus/RV was the most prevalent respiratory virus detected. The negative correlation between EV/RV and IVs prevalence was independent of age and meteorological factors. Compare with other viruses, EV/RV had a significantly lower incidence of co-infection with IVs. Prior exposure to RV inhibited the replication of IV species A, B and oseltamivir-resistance stain in vitro. RV uniquely downregulated genes related to processing of viral mRNA, ribosomal proteins, translation and influenza infection. Interpretation: Epidemiological surveillance and the sequential infection in vitro suggested viral interference between EV/RV and IV operates at the population, individual and cellular levels. Funding: This study was supported by the General Research Fund (Ref: 24107017 and 14103119 to RWYC) and the Chinese University Direct Grant for Research (Ref: 2019·073 to RWYC).

3.
Pathogens ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215179

RESUMO

Characterized by the high morbidity and mortality and seasonal surge, the influenza virus (IV) remains a major public health challenge. Oseltamivir is commonly used as a first-line antiviral. As a neuraminidase inhibitor, it attenuates the penetration of viruses through the mucus on the respiratory tract and inhibits the release of virus progeny from infected cells. However, over the years, oseltamivir-resistant strains have been detected in the IV surveillance programs. Therefore, new antivirals that circumvent the resistant strains would be of great importance. In this study, two novel secondary amine derivatives of oseltamivir CUHK326 (6f) and CUHK392 (10i), which bear heteroaryl groups of M2-S31 proton channel inhibitors, were designed, synthesized and subjected to biological evaluation using plaque assay. Influenza A virus (A/Oklahoma/447/2008, H1N1), influenza B viruses (B/HongKong/CUHK33261/2012), an oseltamivir-resistant influenza A virus (A/HongKong/CUHK71923/2009, H1N1) and an oseltamivir-resistant influenza B virus (B/HongKong/CUHK33280/2012) were included in the antiviral effect assessment compared to oseltamivir carboxylate (OC). Both novel compounds significantly reduced the plaque size of seasonal IV A and B, and performed similarly to OC at their corresponding half-maximal inhibitory concentration (IC50). CUHK392 (10i) functioned more effectively than CUHK326 (6f). More importantly, these compounds showed an inhibitory effect on the oseltamivir-resistant strain under 10 nM with selective index (SI) of >200.

4.
Sci Rep ; 7(1): 6208, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740108

RESUMO

H9N2 viruses are the most widespread influenza viruses in poultry in Asia. We evaluated the infection and tropism of human and avian H9 influenza virus in the human respiratory tract using ex vivo respiratory organ culture. H9 viruses infected the upper and lower respiratory tract and the majority of H9 viruses had a decreased ability to release virus from the bronchus rather than the lung. This may be attributed to a weak neuraminidase (NA) cleavage of carbon-6-linked sialic acid (Sia) rather than carbon-3-linked Sia. The modified cleavage of N-acetlylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by NA in H9 virus replication was observed by reverse genetics, and recombinant H9N2 viruses with amino acids (38KQ) deleted in the NA stalk, and changing the amino acid at position 431 from Proline-to-Lysine. Using recombinant H9 viruses previously evaluated in the ferret, we found that viruses which replicated well in the ferret did not replicate to the same extent in the human ex vivo cultures. The existing risk assessment models for H9N2 viruses in ferrets may not always have a strong correlation with the replication in the human upper respiratory tract. The inclusion of the human ex vivo cultures would further strengthen the future risk-assessment strategies.


Assuntos
Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/virologia , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Sistema Respiratório/virologia , Replicação Viral , Humanos , Vírus da Influenza A Subtipo H9N2/enzimologia , Neuraminidase/genética , Liberação de Vírus
5.
Lancet Respir Med ; 2(10): 813-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25174549

RESUMO

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection causing severe viral pneumonia, with index cases having resided in or recently travelled to the Arabian peninsula, and is a global concern for public health. Limited human-to-human transmission, leading to some case clusters, has been reported. MERS-CoV has been reported in dromedary camels but phenotypic characterisation of such viruses is limited. We aimed to compare MERS-CoV isolates from dromedaries in Saudi Arabia and Egypt with a prototype human MERS-CoV to assess virus replication competence and cell tropism in ex-vivo cultures of human bronchus and lung. METHODS: We characterised MERS-CoV viruses from dromedaries in Saudi Arabia and Egypt and compared them with a human MERS-CoV reference strain. We assessed viral replication kinetics and competence in Vero-E6 cells (rhesus monkey), tissue tropism in cultures of ex-vivo human bronchial and lung tissues, and cytokine and chemokine induction, gene expression, and quantification of viral RNA in Calu-3 cells (human respiratory tract). We used mock-infected tissue as negative controls for ex-vivo experiments and influenza A H5N1 as a positive control for cytokine and chemokine induction experiments in Calu-3 cells. FINDINGS: We isolated three dromedary strains, two from Saudi Arabia (Dromedary/Al-Hasa-KFU-HKU13/2013 [AH13] and Dromedary/Al-Hasa-KFU-HKU19D/2013 [AH19D]), and one from Egypt (Dromedary/Egypt-NRCE-HKU270/2013 [NRCE-HKU270]). The human and dromedary MERS-CoV strains had similar viral replication competence in Vero-E6 cells and respiratory tropism in ex-vivo cultures of the human respiratory tract, and had similar ability to evade interferon responses in the human-respiratory-tract-derived cell line Calu-3. INTERPRETATION: The similarity of virus tropism and replication competence of human and dromedary MERS-CoV from the Arabian peninsula, and genetically diverse dromedary viruses from Egypt, in ex-vivo cultures of the human respiratory tract suggests that dromedary viruses from Saudi Arabia and Egypt are probably infectious to human beings. Exposure to zoonotic MERS-CoV is probably occurring in a wider geographical region beyond the Arabian peninsula. FUNDING: King Faisal University, Egyptian National Research Centre, Hong Kong Food and Health Bureau, National Institute of Allergy and Infectious Diseases, and European Community Seventh Framework Program.


Assuntos
Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Sistema Respiratório/virologia , Tropismo Viral , Replicação Viral , Animais , Camelus , Egito , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Arábia Saudita
6.
Lancet Respir Med ; 1(7): 534-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24461614

RESUMO

BACKGROUND: Since March, 2013, an avian-origin influenza A H7N9 virus has caused severe pneumonia in China. The aim of this study was to investigate the pathogenesis of this new virus in human beings. METHODS: We obtained ex-vivo cultures of the human bronchus, lung, nasopharynx, and tonsil and in-vitro cultures of primary human alveolar epithelial cells and peripheral blood monocyte-derived macrophages. We compared virus tropism and induction of proinflammatory cytokine responses of two human influenza A H7N9 virus isolates, A/Shanghai/1/2013 and A/Shanghai/2/2013; a highly pathogenic avian influenza H5N1 virus; the highly pathogenic avian influenza H7N7 virus that infected human beings in the Netherlands in 2003; the 2009 pandemic influenza H1N1 virus, and a low pathogenic duck H7N9 virus that was genetically different to the human disease causing A H7N9 viruses. FINDINGS: Both human H7N9 viruses replicated efficiently in human bronchus and lung ex-vivo cultures, whereas duck/H7N9 virus failed to replicate in either. Both human A H7N9 viruses infected both ciliated and non-ciliated human bronchial epithelial cells and replicated to higher titres than did H5N1 (p<0.0001 to 0.0046) and A/Shanghai/1/2013 replicated to higher titres than did H7N7 (p=0.0002-0.01). Both human A H7N9 viruses predominantly infected type II alveolar epithelial cells and alveolar macrophages in the human lung and replicated to higher titres than did H5N1 (p<0.0001 to 0.0078); A/Shanghai/1/2013 replicated to higher titres than did H1N1 (p=0.0052-0.05) and H7N7 (p=0.0031-0.0151). Human H7N9 viruses were less potent inducers of proinflammatory cytokines compared with H5N1 virus. INTERPRETATION: Collectively, the results suggest that the novel H7N9 viruses are better adapted to infect and replicate in the human conducting and lower airways than are other avian influenza viruses, including H5N1, and pose an important pandemic threat. FUNDING: Area of Excellence Scheme of the University Grants Committee (AoE/M-12/96), Hong Kong Special Administrative Region.


Assuntos
Imunidade Inata/imunologia , Vírus da Influenza A Subtipo H7N7/imunologia , Influenza Humana/imunologia , Sistema Respiratório/imunologia , Células Cultivadas , Citocinas/metabolismo , Genes Virais/imunologia , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/virologia , Sistema Respiratório/virologia , Tropismo/imunologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...