Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Immunol ; 44(4): 88, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578475

RESUMO

The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome , Ubiquitina/metabolismo
2.
J Allergy Clin Immunol ; 152(5): 1292-1302, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422272

RESUMO

BACKGROUND: Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE: We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS: Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS: We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS: Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.


Assuntos
Mutação com Ganho de Função , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Fosfolipase C gama/genética
3.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315560

RESUMO

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Assuntos
Osteomielite , Receptores de Interleucina-1 , Camundongos , Animais , Receptores de Interleucina-1/genética , Osteomielite/tratamento farmacológico , Osteomielite/genética , Osteomielite/patologia , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Transdução de Sinais , Mutação
4.
J Clin Immunol ; 43(4): 835-845, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807221

RESUMO

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2), an autosomal recessive autoinflammatory disorder caused by biallelic loss-of-function variants in adenosine deaminase 2 (ADA2), has not been systemically investigated in Chinese population yet. We aim to further characterize DADA2 cases in China. METHODS: A retrospective analysis of patients with DADA2 identified through whole exome sequencing (WES) at seventeen rheumatology centers across China was conducted. Clinical characteristics, laboratory findings, genotype, and treatment response were analyzed. RESULTS: Thirty patients with DADA2 were enrolled between January 2015 and December 2021. Adenosine deaminase 2 enzymatic activity was low in all tested cases to confirm pathogenicity. Median age of disease presentation was 4.3 years and the median age at diagnosis was 7.8 years. All but one patient presented during childhood and two subjects died from complications of their disease. The patients most commonly presented with systemic inflammation (92.9%), vasculitis (86.7%), and hypogammaglobinemia (73.3%) while one patient presented with bone marrow failure (BMF) with variable cytopenia. Twenty-three (76.7%) patients were treated with TNF inhibitors (TNFi), while two (6.7%) underwent hematopoietic stem cell transplantation (HSCT). They all achieved clinical remission. A total of thirty-nine ADA2 causative variants were identified, six of which were novel. CONCLUSION: To establish early diagnosis and improve clinical outcomes, genetic screening and/or testing of ADA2 enzymatic activity should be performed in patients with suspected clinical features. TNFi is considered as first line treatment for those with vascular phenotypes. HSCT may be beneficial for those with hematological disease or in those who are refractory to TNFi.


Assuntos
Adenosina Desaminase , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Adenosina Desaminase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Estudos de Coortes , Estudos Retrospectivos , Mutação
5.
Arthritis Rheumatol ; 74(6): 1083-1090, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35080150

RESUMO

OBJECTIVE: Proteasome-associated autoinflammatory syndrome (PRAAS) is caused by mutations affecting components of the proteasome and activation of the type I interferon (IFN) pathway. This study was undertaken to investigate the pathogenic mechanisms of a newly recognized type of PRAAS caused by PSMD12 haploinsufficiency. METHODS: Whole-exome sequencing was performed in members of a family with skin rash, congenital uveitis, and developmental delay. We performed functional studies to assess proteasome dysfunction and inflammatory signatures in patients, and single-cell RNA sequencing to further explore the spectrum of immune cell activation. RESULTS: A novel truncated variant in PSMD12 (c.865C>T, p.Arg289*) was identified in 2 family members. The impairment of proteasome function was found in peripheral blood mononuclear cells (PBMCs), as well as in PSMD12-knockdown HEK 293T cell lines. Moreover, we defined the inflammatory signatures in patient PBMCs and found elevated IFN signals, especially in monocytes, by single-cell RNA sequencing. CONCLUSION: These findings indicate that PSMD12 haploinsufficiency causes a set of inflammation signatures in addition to neurodevelopmental disorders. Our work expands the genotype and phenotype spectrum of PRAAS and suggests a bridge between the almost exclusively inflammatory phenotypes in the majority of PRAAS patients and the almost exclusively neurodevelopmental phenotypes in the previously reported Stankiewicz-Isidor syndrome.


Assuntos
Haploinsuficiência , Complexo de Endopeptidases do Proteassoma , Haploinsuficiência/genética , Humanos , Leucócitos Mononucleares/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome , Sequenciamento do Exoma
6.
Sci Adv ; 7(47): eabi6794, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797715

RESUMO

OTULIN is a linear deubiquitinase that negatively regulates the nuclear factor κB (NF-κB) signaling pathway. Patients with OTULIN deficiency, termed as otulipenia or OTULIN-related autoinflammatory syndrome, present with early onset severe systemic inflammation due to increased NF-κB activation. We aimed to investigate additional disease mechanisms of OTULIN deficiency. Our study found a remarkable activation of type I interferon (IFN-I) signaling in whole blood, peripheral blood mononuclear cells, monocytes, and serum from patients with OTULIN deficiency. We observed similar immunologic findings in OTULIN-deficient cell lines generated by CRISPR. Mechanistically, we identified proteasome subunits as substrates of OTULIN deubiquitinase activity and demonstrated proteasome dysregulation in OTULIN-deficient cells as the cause of IFN-I activation. These results reveal an important role of linear ubiquitination in the regulation of proteasome function and suggest a link in the pathogenesis of proteasome-associated autoinflammatory syndromes and OTULIN deficiency.

8.
Nature ; 577(7788): 109-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827280

RESUMO

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways1. Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development2,3. However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomal-dominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients' peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


Assuntos
Caspase 8/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Feminino , Células HEK293 , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Nat Commun ; 8(1): 814, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993672

RESUMO

Ubiquitin ligase TRAF6, together with ubiquitin-conjugating enzyme Ubc13/Uev1, catalyzes processive assembly of unanchored K63-linked polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways. However, what domain and how it functions to enable TRAF6's processivity are largely uncharacterized. Here, we find TRAF6 coiled-coil (CC) domain is crucial to enable its processivity. The CC domain mediates TRAF6 oligomerization to ensure efficient long polyubiquitin chain assembly. Mutating or deleting the CC domain impairs TRAF6 oligomerization and processive polyubiquitin chain assembly. Fusion of the CC domain to the E3 ubiquitin ligase CHIP/STUB1 renders the latter capable of NF-κB activation. Moreover, the CC domain, after oligomerization, interacts with Ubc13/Ub~Ubc13, which further contributes to TRAF6 processivity. Point mutations within the CC domain that weaken TRAF6 interaction with Ubc13/Ub~Ubc13 diminish TRAF6 processivity. Our results reveal that the CC oligomerization primes its interaction with Ubc13/Ub~Ubc13 to confer processivity to TRAF6 ubiquitin ligase activity.Ubiquitin ligase TRAF6 catalyzes assembly of free polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways, but the mechanism underlying its processivity is unclear. Here, the authors show that TRAF6 coiled-coil oligomerization domain primes its interaction with Ubc13/Ub~Ubc13 to confer processivity.


Assuntos
Fator 6 Associado a Receptor de TNF/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Poliubiquitina/metabolismo , Domínios Proteicos , Fator 6 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
J Comp Physiol B ; 187(7): 931-943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28353178

RESUMO

Oxygen is a vital element in aquatic environments. The concentration of oxygen to which aquatic organisms are exposed is influenced by salinity, water temperature, weather, and surface water runoff. Hypoxia has a serious effect on fish populations, and can lead to the loss of habitat and die-offs. Therefore, in the present study we used next-generation sequencing technology to characterize the transcriptomes of Pelteobagrus vachelli and identified 70 candidate genes in the HIF-1 signaling pathway that are important for the hypoxic response in all metazoan species. For the first time, the present study reported the effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices in P. vachelli. The predicted physiological adjustments show that P. vachelli's blood oxygen-carrying capacity was increased through increased RBC, HB, and SI after hypoxia exposure. Glycolysis-related enzyme activities (PFK, HK, and PK) and LDH in the brain and liver also increased, indicating a rise in anaerobic metabolism. The observed reduction in oxidative enzyme level (CS) in the liver during hypoxia suggests a concomitant depression in aerobic metabolism. There were significant increases in oxygen sensor mRNA expression and HIF-1α protein expression during hypoxia and reoxygenation exposure, suggesting that the HIF-1 signaling pathway was activated in the liver and brain of P. vachelli in response to acute hypoxia and reoxygenation. Our findings suggest that oxygen sensors (e.g., HIF-1α) of P. vachelli are potentially useful biomarkers of environmental hypoxic exposure. These data contribute to a better understanding of the molecular mechanisms of the hypoxia signaling pathway in fish under hypoxia and reoxygenation.


Assuntos
Peixes-Gato/metabolismo , Metabolismo Energético , Proteínas de Peixes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Adaptação Fisiológica , Animais , Encéfalo/metabolismo , Peixes-Gato/sangue , Peixes-Gato/genética , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Hipóxia/sangue , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Oxigênio/sangue , RNA Mensageiro/genética , Fatores de Tempo
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4191-4192, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-25648919

RESUMO

In the present of study, we have reported the complete mitochondrial DNA sequence of the hybrid of Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂) that is obtained by artificial hybridization. The total length of the mitochondrial genome is 16,527 bp, with the base compositions of 30.84% A, 25.54% T, 28.22% C, and 15.40% G. It contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes, and a major non-coding control region (D-loop region). The arrangement of these genes is same as that observed in the teleosts. All protein initiation codons are ATG, except for COX1 that begins with GTG. The complete mitogenome of the hybrid of P. fulvidraco (♀) × P. vachelli (♂) provides an important data set for the exploration of mitochondrial inheritance mechanism. The termination-associated sequence and critical central conserved sequences (CSB-D, CSB-E and CSB-F) are also detected.


Assuntos
Peixes-Gato/genética , Quimera/genética , Proteínas de Peixes/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , RNA Ribossômico/genética , RNA de Transferência/genética , RNA/genética , Animais , RNA Mitocondrial
12.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3551-2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26260177

RESUMO

The complete mitochondrial genome of Pseudobagrus vachelli has been sequenced. The mitochondrial genome is 16 529 bp in length, with the base composition of 31.61% A, 26.88% T, 26.55% C, and 14.96% G, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The gene order and orientation are similar with some typical fish species. The data will provide useful molecular information for phylogenetic studies concerning P. vachelli and its related species.


Assuntos
Peixes-Gato/genética , Genoma Mitocondrial , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Animais , Composição de Bases , Ordem dos Genes , Genes de RNAr , Tamanho do Genoma , Filogenia , RNA de Transferência/genética
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2414-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26016879

RESUMO

In this study, the mitochondrial genome of Oxyeleotris lineolatus was first determined. The length of entire mtDNA sequence was 16,522 bp with (A + T) content of 53.81%, and it contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a control region. The gene order and the orientation are similar to some typical fish species. The data will provide useful molecular information for phylogenetic studies concerning O. lineolatus and its related species.


Assuntos
Genoma Mitocondrial , Perciformes/classificação , Perciformes/genética , Filogenia , Sequenciamento Completo do Genoma , Animais , Composição de Bases , Evolução Molecular , Genes Mitocondriais , Tamanho do Genoma , Fases de Leitura Aberta , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...