Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 242: 107694, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38556061

RESUMO

Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.


Assuntos
Acetatos , Indóis , Mitofagia , Fosfolipases A2 , Mordeduras de Serpentes , Animais , Camundongos , Mitofagia/efeitos dos fármacos , Fosfolipases A2/metabolismo , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/complicações , Cetoácidos/farmacologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Venenos Elapídicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Doença Hepática Induzida por Substâncias e Drogas
2.
Int J Biol Macromol ; 257(Pt 2): 128708, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096930

RESUMO

Uranium and thorium of symbiotic relationship commonly appear in one kind of raw or spent ore. The simultaneous enrichment toward both metals in the first step is essential during many hydrometallurgy processing. Therefore bifunctional solid-state ionic liquid supported amidoxime chitosan (ACS) adsorbents were developed to simultaneously adsorb the two metal from the aqueous solution. The adsorption capacity of the bifunctional adsorbents toward uranium and thorium were significantly superior to the ionic liquid-free amidoxime chitosan, obviously proving the synergistic effect. For both uranium and thorium, the adsorption capacity in the consequence of ACS-[N4444][DEHP], ACS-[N4444][EHEHP], ACS-[N1888][DEHP] and ACS-[N1888][EHEHP] prove the steric effect and PO bonding played important roles in the adsorption. Study on isotherms and kinetics demonstrated the adsorption of ionic liquid-ACS adopted monolayer and chemical way. The ΔGo of very small negative values highlighted ionic liquid-ACS were prone to adsorb uranium and thorium. The study showed feasibility of bifunctional solid-state ionic liquid supported amidoxime chitosan adsorbents for Th(IV) and U(VI).


Assuntos
Quitosana , Dietilexilftalato , Líquidos Iônicos , Oximas , Urânio , Tório , Adsorção , Urânio/análise , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA