Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 14288-14295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442210

RESUMO

Area-selective atomic layer deposition (AS-ALD) processes for TiO2 and TiON on SiN as the growth area vs SiO2 as the nongrowth area are demonstrated on patterns created by state-of-the-art 300 mm semiconductor wafer fabrication. The processes consist of an in situ CF4/N2 plasma etching step that has the dual role of removing the SiN native oxide and passivating the SiO2 surface with fluorinated species, thus rendering the latter surface less reactive toward titanium tetrachloride (TiCl4) precursor. Additionally, (dimethylamino)trimethylsilane was employed as a small molecule inhibitor (SMI) to further enhance the selectivity. Virtually perfect selectivity was obtained when combining the deposition process with intermittent CF4/N2 plasma-based back-etching steps, as demonstrated by scanning and transmission electron microscopy inspections. Application-compatible thicknesses of ∼8 and ∼5 nm were obtained for thermal ALD of TiO2 and plasma ALD of TiON.

2.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929399

RESUMO

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...