Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pharm Res ; 40(9): 2103-2106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349651

RESUMO

The goal of pharmacovigilance (PV) is to prevent adverse events (AEs) associated with drugs and vaccines. Current PV programs are of a reactive nature and rest entirely on data science, i.e., detecting and analyzing AE data from provider/patient reports, health records and even social media. The ensuing preventive actions are too late for people who have experienced AEs and often overly broad, as responses include entire product withdrawals, batch recalls, or contraindications of subpopulations. To prevent AEs in a timely and precise manner, it is necessary to go beyond data science and incorporate measurement science into PV efforts through person-level patient screening and dose-level product surveillance. Measurement-based PV may be called 'preventive pharmacovigilance', the goal of which is to identify susceptible individuals and defective doses to prevent AEs. A comprehensive PV program should contain both reactive and preventive components by integrating data science and measurement science.


Assuntos
Farmacovigilância , Vacinas , Humanos , Vacinas/efeitos adversos
3.
Pharm Res ; 40(8): 1989-1998, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127780

RESUMO

PURPOSE: To evaluate wNMR, an emerging noninvasive analytical technology, for characterizing aluminum-adjuvanted vaccine formulations. METHODS: wNMR stands for water proton nuclear magnetic resonance. In this work, wNMR and optical techniques (laser diffraction and laser scattering) were used to characterize vaccine formulations containing different antigen loads adsorbed onto AlPO4 adjuvant microparticles, including the fully dispersed state and the sedimentation process. All wNMR measurements were done noninvasively on sealed vials containing the adsorbed vaccine suspensions, while the optical techniques require transferring the adsorbed vaccine suspensions out of the original vial into specialized cuvette/tube for analysis. For analyzing fully dispersed suspensions, optical techniques also require sample dilution. RESULTS: wNMR outperformed laser diffraction in differentiating high- and low-dose formulations of the same vaccine, while wNMR and laser scattering achieved comparable results on vaccine sedimentation kinetics and the compactness of fully settled vaccines. CONCLUSION: wNMR could be used to analyze aluminum-adjuvanted formulations and to differentiate between formulations containing different antigen loads adsorbed onto aluminum adjuvant microparticles. The results demonstrate the capability of wNMR to characterize antigen-adjuvant complexes and to noninvasively inspect finished vaccine products.


Assuntos
Prótons , Vacinas , Alumínio , Água/química , Suspensões , Adjuvantes Imunológicos/química , Antígenos/química , Espectroscopia de Ressonância Magnética
4.
Hum Vaccin Immunother ; 19(2): 2215152, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37254504

RESUMO

Vaccine sedimentation and resuspension are properties that vaccine makers use to characterize a suspension product during research and development as well as throughout the shelf life of the vaccine. Three vaccines with three different aluminum adjuvants and different antigens were selected and monitored over the course of sedimentation using water proton nuclear magnetic resonance (wNMR) relaxometry. This simple method measured fully intact, single-dose vaccine vials and reported sedimentation profiles for each, which readily distinguished freeze-stressed vaccines from unstressed vaccines.


Assuntos
Alumínio , Vacinas , Adjuvantes Imunológicos
5.
MAbs ; 15(1): 2160227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683157

RESUMO

The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay. To monitor the oxidation process, the experimental workflow involved incubation of NISTmAb with hydrogen peroxide in a benchtop nuclear magnetic resonance spectrometer (NMR) that followed the reaction kinetics, in real-time through the water proton transverse relaxation rate R2(1H2O). Aliquots taken at defined time points were further analyzed by high-field 2D 1H-13C methyl correlation fingerprint spectra in parallel with other analytical techniques, including thermal unfolding, size-exclusion chromatography, and surface plasmon resonance, to assess changes in stability, heterogeneity, and binding affinities. The complementary measurement outputs from the different techniques demonstrate the utility of combining NMR with other analytical tools to monitor oxidation kinetics and extract the resulting structural changes in mAbs that are functionally relevant, allowing rigorous assessment of HOS attributes relevant to the efficacy and safety of mAb-based drug products.


Assuntos
Anticorpos Monoclonais , Peróxido de Hidrogênio , Humanos , Anticorpos Monoclonais/química , Espectroscopia de Ressonância Magnética , Ressonância de Plasmônio de Superfície
6.
Pharm Res ; 40(6): 1435-1446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36414838

RESUMO

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.


Assuntos
Adjuvantes Imunológicos , Alumínio , Alumínio/química , Adjuvantes Imunológicos/química , Antígenos/química
7.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364250

RESUMO

The in vivo potency of polyphosphazene immunoadjuvants is inherently linked to the ability of these ionic macromolecules to assemble with antigenic proteins in aqueous solutions and form physiologically stable supramolecular complexes. Therefore, in-depth knowledge of interactions in this biologically relevant system is a prerequisite for a better understanding of mechanism of immunoadjuvant activity. Present study explores a self-assembly of polyphosphazene immunoadjuvant-PCPP and a model antigen-lysozyme in a physiologically relevant environment-saline solution and neutral pH. Three analytical techniques were employed to characterize reaction thermodynamics, water-solute structural organization, and supramolecular dimensions: isothermal titration calorimetry (ITC), water proton nuclear magnetic resonance (wNMR), and dynamic light scattering (DLS). The formation of lysozyme-PCPP complexes at near physiological conditions was detected by all methods and the avidity was modulated by a physical state and dimensions of the assemblies. Thermodynamic analysis revealed the dissociation constant in micromolar range and the dominance of enthalpy factor in interactions, which is in line with previously suggested model of protein charge anisotropy and small persistence length of the polymer favoring the formation of high affinity complexes. The paper reports advantageous use of wNMR method for studying protein-polymer interactions, especially for low protein-load complexes.


Assuntos
Prótons , Água , Água/química , Muramidase , Polieletrólitos , Difusão Dinâmica da Luz , Calorimetria/métodos , Polímeros/química , Termodinâmica , Espectroscopia de Ressonância Magnética , Adjuvantes Imunológicos
9.
J Diabetes Sci Technol ; 16(6): 1410-1418, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34111968

RESUMO

BACKGROUND: There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. METHODS: Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. RESULTS: Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. CONCLUSIONS: Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.


Assuntos
Prótons , Água , Humanos , Insulina , Seringas , Espectroscopia de Ressonância Magnética , Hipoglicemiantes
11.
Anal Chem ; 93(48): 15816-15820, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792343

RESUMO

The present work reports an enabling novel technology for quantifying the gene content in adeno-associated viral capsids. The method is based on the water proton nuclear magnetic resonance (wNMR) technique. Instead of analyzing the capsid directly, it utilizes water molecules to distinguish empty and full capsids, as water interacts with them differently. The transverse relaxation rate of water protons, R2(1H2O), readily distinguishes empty and full capsids and is capable of quantifying the fraction of full capsids in a mixture of full and empty ones. It involves no sample preparation and no reagents. Measurement is rapid (data collection takes 1-2 min), noninvasive (the capsid sample can stay inside the original sealed and labeled container to be used in other studies or administered to a patient), and performed using a wide-bore benchtop NMR instrument. The method can be readily implemented at a production plant for product release as part of product quality control.


Assuntos
Capsídeo , Prótons , Dependovirus , Humanos , Espectroscopia de Ressonância Magnética , Água
13.
Mol Pharm ; 18(4): 1544-1557, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621099

RESUMO

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.


Assuntos
Medicamentos Genéricos/química , Compostos Férricos/química , Nanopartículas/química , Anemia Ferropriva/tratamento farmacológico , Química Farmacêutica , Cromatografia em Gel , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/normas , Difusão Dinâmica da Luz , Estudos de Equivalência como Asunto , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Compostos Férricos/normas , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/normas , Controle de Qualidade , Ultracentrifugação
14.
Pharm Res ; 38(1): 3-7, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33555493

RESUMO

Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage. Delivering biologics, while maintaining the cold chain, whether standard (2°C to 8°C) or deepfreeze (as cold as -70°C), requires extensive infrastructure that is expensive to build and maintain. This poses a huge challenge to equitable healthcare delivery, especially during a global pandemic. Even when the infrastructure is in place, breaches of the cold chain are common. Such breaches may damage the product, making therapeutics and vaccines ineffective or even harmful. Rather than strengthening the cold chain through building more infrastructure and imposing more stringent guidelines, we suggest that money and effort are best spent on making the cold chain unnecessary for biologics delivery and storage. To meet this grand challenge in pharmaceutical research, we highlight areas where innovations are needed in the design, formulation and biomanufacturing of biologics, including point-of-care manufacturing and inspection. These technological innovations would rely on fundamental advances in our understanding of biomolecules and cells.


Assuntos
Produtos Biológicos/normas , COVID-19/terapia , Pesquisa Farmacêutica/normas , Refrigeração/normas , Produtos Biológicos/uso terapêutico , COVID-19/epidemiologia , Humanos , Pesquisa Farmacêutica/tendências , Refrigeração/tendências , Vacinas/normas , Vacinas/uso terapêutico
15.
Magn Reson Chem ; 59(2): 147-161, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32888244

RESUMO

Suspensions of solid particles find applications in many areas-mining, waste treatment, and in pharmaceutical formulations. Pharmaceutical suspensions include aluminum-adjuvanted vaccines are widely administered to millions of people worldwide annually. Hence, the stability parameters of such suspensions, for example, sedimentation rate and the compactness of the formed sediments, are of great interest to achieve the most optimal and stable formulations. Unlike currently used analytical techniques involving visual observations and/or monitoring of several optical properties using specialized glassware, water proton nuclear magnetic resonance (wNMR) used in this work allows one to analyze samples in their original sealed container regardless of its opacity and/or labeling. It was demonstrated that the water proton transverse relaxation rate could be used to monitor in real time the sedimentation process of two widely used aluminum adjuvants-Alhydrogel® and Adju-Phos®. Using wNMR, we obtained valuable information on the sedimentation rate, dynamics of the supernatant and sediment formation, and the sedimentation volume ratio (SVR) reflecting the compactness of the formed sediment. Results on SVR from wNMR were verified by caliper measurements. Verification of the sedimentation rate results from wNMR by other analytical techniques is challenging due to differences in the measured attributes and even units of the reported rate. Nonetheless, our results demonstrate the practical applicability of wNMR as an analytical tool to study pharmaceutical suspensions, for example, aluminum-adjuvanted vaccines, to provide higher quality and more efficient vaccines. Such analyses could be carried out in the original container of a suspension drug product to study its colloidal stability and to monitor its quality over time without compromising product integrity.


Assuntos
Adjuvantes Imunológicos/química , Compostos de Alumínio/química , Hidróxido de Alumínio/química , Fosfatos/química , Água/química , Cinética , Fenômenos Físicos , Espectroscopia de Prótons por Ressonância Magnética
16.
Vaccine ; 38(31): 4853-4860, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32482461

RESUMO

Aluminum-adjuvanted vaccines are freeze-sensitive products that require attentive cold chain adherence. Freeze/thaw events can be tested using "The World Health Organization Shake Test", a qualitative test whereby a vial from the batch suspected to have been frozen is checked to infer whether the whole batch has been frozen. In this paper, we present a noninvasive and quantitative method to detect whether a vial of liquid vaccine has experienced freeze/thaw using the water proton transverse relaxation rate by Nuclear Magnetic Resonance relaxometry (wNMR relaxometry). Importantly, wNMR relaxometry does not compromise the vial's integrity so the analyzed vial can be used for vaccination if it meets the quality specifications. Vial-to-vial variability in freezing susceptibility within a single carton of vaccine vials was also detected, both by visual observation and concurrently by wNMR relaxometry. This variability brings into question the practice of using one or a few vials in a batch of vaccines to infer about the quality of the whole batch.


Assuntos
Prótons , Vacinas , Congelamento , Espectroscopia de Ressonância Magnética , Sistemas Automatizados de Assistência Junto ao Leito , Água
17.
Curr Protoc Protein Sci ; 99(1): e102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31869512

RESUMO

The water-proton signal, overwhelmingly considered a nuisance in nuclear magnetic resonance spectroscopy, is advantageously used as a tool to assess protein concentration and to detect protein aggregates in aqueous solutions. The protocols in this article describe use of the water-proton transverse relaxation rate to determine concentration and aggregate content in protein solutions. Detailed recommendations and description of the parameter settings and data processing ensure successful implementation of this technique, even by a user with limited experience in magnetic resonance relaxometry. All measurements are done noninvasively, in a sealed container, without sampling or otherwise aliquoting the solution. The magnetic resonance relaxometry approach offered in this article could be advantageous for analysis of biologics formulations or when use of conventional analytical techniques is not possible. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Nuclear magnetic resonance (NMR) relaxometry to measure protein concentration Basic Protocol 2: NMR relaxometry to measure protein aggregation.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Proteínas/química
18.
Anal Chem ; 91(21): 13538-13546, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550145

RESUMO

Continuous manufacturing of biologics is one of the priorities of the biopharmaceutical industry. However, its widespread implementation is hampered by a lack of noninvasive/nondestructive process analytical technology (PAT) systems capable of real-time in-line monitoring of product flow parameters, such as concentration and/or aggregate content. We have previously demonstrated that, under nonflow conditions, the water proton transverse relaxation rate, R2(1H2O), is sensitive to protein concentration and aggregate content in biopharmaceutical formulations. In the present work, we explored the potential of water proton NMR under flow conditions (flow-wNMR) to use R2(1H2O) as a quantitative indicator of protein concentration variations and aggregate levels in the process flow. We show that, under flow conditions, R2(1H2O) is sensitive to rather small changes in protein concentration (<1 mg/mL) and is capable to detect variations in the aggregate content of <1%. Our findings suggest that flow-wNMR could be advantageously used as a real-time in-line noninvasive PAT for continuous biomanufacturing.


Assuntos
Espectroscopia de Prótons por Ressonância Magnética/métodos , Tecnologia Farmacêutica , Água/química , Cromatografia em Gel , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Soroalbumina Bovina/química
19.
AAPS PharmSciTech ; 20(5): 214, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31172314

RESUMO

Typesetting error occurred and author corrections to the equations and text edits at the proofing stage were not incorporated in the published article. The original article has been corrected.

20.
AAPS PharmSciTech ; 20(5): 189, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31111256

RESUMO

Batch-level inference-based quality control is the standard practice for drug products. However, rare drug product defects may be missed by batch-level statistical sampling, where a subset of vials in a batch is tested quantitatively but destructively. In 2013, a suspension insulin product, NovoLog® Mix 70/30 was recalled due to a manufacturing error, which resulted in insulin strength deviations up to 50% from the labeled value. This study analyzed currently marketed FlexPen® devices by the water proton transverse relaxation rate using a benchtop nuclear magnetic resonance relaxometer. The water proton transverse relaxation rate was found to be sensitive to detecting concentration changes of the FlexPen® product. These findings support the development of vial-level verification-based quality control for drug products where every vial in a batch is inspected quantitatively but nondestructively.


Assuntos
Insulinas Bifásicas/análise , Insulina Aspart/análise , Insulina Isófana/análise , Espectroscopia de Ressonância Magnética/métodos , Insulinas Bifásicas/química , Insulinas Bifásicas/normas , Insulina Aspart/química , Insulina Aspart/normas , Insulina Isófana/química , Insulina Isófana/normas , Prótons , Controle de Qualidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...