Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(12): e10761, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107425

RESUMO

Many fire-prone forests are experiencing wildfires that burn outside the historical range of variation in extent and severity. These fires impact pollinators and the ecosystem services they provide, but how the effects of fire are mediated by burn severity in different habitats is not well understood. We used generalized linear mixed models in a Bayesian framework to model the abundance of pollinators as a function of burn severity, habitat, and floral resources in post-fire, mid-elevation, conifer forest, and meadow in the Sierra Nevada, California. Although most species-level effects were not significant, we found highly consistent negative impacts of burn severity in meadows where pollinators were most abundant, with only hummingbirds and some butterfly families responding positively to burn severity in meadows. Moderate-severity fire tended to increase the abundance of most pollinator taxa in upland forest habitat, indicating that even in large fires that burn primarily at high- and moderate-severity patches may be associated with improved habitat conditions for pollinator species in upland forest. Nearly all pollinator taxa responded positively to floral richness but not necessarily to floral abundance. Given that much of the Sierra Nevada is predicted to burn at high severity, limiting high-severity effects in meadow and upland habitats may help conserve pollinator communities whereas low- to moderate-severity fire may be needed in both systems.

2.
Sci Data ; 9(1): 384, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798761

RESUMO

Wildfire dynamics are changing around the world and understanding their effects on ecological communities and landscapes is urgent and important. We report detailed food webs for unburned, low-to-moderate and high severity burned habitats three years post-fire in the Eldorado National Forest, California. The cumulative cross-habitat food web contains 3,084 ontogenetic stages (nodes) or plant parts comprising 849 species (including 107 primary producers, 634 invertebrates, 94 vertebrates). There were 178,655 trophic interactions between these nodes. We provide information on taxonomy, body size, biomass density and trophic interactions under each of the three burn conditions. We detail 19 sampling methods deployed across 27 sites (nine in each burn condition) used to estimate the richness, body size, abundance and biomass density estimates in the node lists. We provide the R code and raw data to estimate summarized node densities and assign trophic links.

3.
Ecol Evol ; 12(5): e8918, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600681

RESUMO

The frequency of large, high-severity "mega-fires" has increased in recent decades, with numerous consequences for forest ecosystems. In particular, small mammal communities are vulnerable to post-fire shifts in resource availability and play critical roles in forest ecosystems. Inconsistencies in previous observations of small mammal community responses to fire severity underscore the importance of examining mechanisms regulating the effects of fire severity on post-fire recovery of small mammal communities. We compared small mammal abundance, diversity, and community structure among habitats that burned at different severities, and used vegetation characteristics and small mammal functional traits to predict community responses to fire severity three years after one mega-fire in the Sierra Nevada, California. Using a model-based fourth-corner analysis, we examined how interactions between vegetation variables and small mammal traits associated with their resource use were associated with post-fire small mammal community structure among fire severity categories. Small mammal abundance was similar across fire severity categories, but diversity decreased and community structure shifted as fire severity increased. Differences in small mammal communities were large only between unburned and high-severity sites. Three highly correlated fire-dependent vegetation variables affected by fire and the volume of soft coarse woody debris were associated with small mammal community structures. Furthermore, we found that interactions between vegetation variables and three small mammal traits (feeding guild, primary foraging mode, and primary nesting habit) predicted community structure across fire severity categories. We concluded that resource use was important in regulating small mammal recovery after the fire because vegetation provided required resources to small mammals as determined by their functional traits. Given the mechanistic nature of our analyses, these results may be applicable to other fire-prone forest systems, although it will be important to conduct studies across large biogeographic regions and over long post-fire time periods to assess generality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA