Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7528, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553550

RESUMO

Biological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11-14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.


Assuntos
Nanocompostos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Antibacterianos/química , Antioxidantes , Nanocompostos/química
2.
ACS Omega ; 8(50): 48535-48548, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144097

RESUMO

It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.

3.
Plant Physiol Biochem ; 204: 108081, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847972

RESUMO

Immense crowd of heavy metal in cultivated land is evolving as a global concern as a result of boosted level of soil toxicity. Amongst various metals, Lead (Pb) contamination has become alarming for plant and human heath through ingesting of polluted soils and food crops. To counterfeit this, a nanotechnological neutralizer effective in form of soiling of cobalt oxide Co3O4 Nbs to Acacia jacquemontii and Acacia nilotica with various meditations as 25, 50, 75 and 100 ppm). A Substantial result was observed on growth of plants but premium results were got by applications of cobalt oxide Nbs at 75 ppm. By this means, enhanced root length (39%), fresh weight (32%), shoot length (58%), as well as dry weight (28%) in selected Acacia species compared to control. Chlrophy contents in A. jacquemontii were estimated to be 0.23, 2.73 and 3.19 mg/L with treated with different concentrations of cobalt Nbs while in A. nilotica, the contents were 0.51, 2.93 and 3.12 mg/L respectively on same concentration. The atomic absorption (AAS), antioxidant activity and defendable positive comeback by using Co3O4 Nbs. Hence, the greenly synthesized Co3O4 Nbs counter acts lead toxicity to override and preserving the growth of plant. Such nanotechnological kits can consequently enhance the alternative system to stunned toxicity for distinguish the yield demand end to end with the progress of agronomic management approaches.


Assuntos
Acacia , Poluentes do Solo , Humanos , Chumbo/toxicidade , Acacia/fisiologia , Plantas , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
4.
Biomedicines ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893205

RESUMO

Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 µg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 µg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 µg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.

5.
J Surg Case Rep ; 2023(5): rjad241, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251247

RESUMO

Gastrointestinal (GI) intestinal stromal tumors account for 60% of mesenchymal GI tract tumors commonly located in the stomach and small intestine, predominantly solid tumors that rarely undergo cystic degeneration. A 65-year-old patient with increasing upper abdominal swelling and a computed tomography scan abdomen showed a large unilocular 17 × 16 × 15 cm lesion. A colossal cystic swelling in the lesser omentum, anterior to the stomach, was found upon exploration. Histopathological examination showed a spindle cell tumor turned out to be CD117 positive and S100 negative on immunostains. The tumor was moderate risk gastric gastrointestinal intestinal stromal tumor (GIST) based on the site; Stomach, Size >10 cm; Mitosis <5/5 mm2 according to risk assessment of GIST, 2006. GISTs are predominantly solid tumors and rarely undergo cystic transformation. The primary differential diagnoses of spindle cell neoplasm are GISTs, Leiomyoma, Leiomyosarcoma and Schwannoma. These spindle cell neoplasms are differentiated by applying a panel of Immunohistochemical stains, CD117, SMA and S100.

6.
ACS Omega ; 8(6): 5836-5849, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816675

RESUMO

Massive accumulation of heavy metals in agricultural land as a result of enhanced levels of toxicity in the soil is an emerging global concern. Among various metals, zinc contamination has severe effects on plant and human health through the food chain. To remove such toxicity, a nanotechnological neutralizer, cobalt oxide nanoballs (Co3O4 Nbs) were synthesized by using the extract of Cordia myxa. The Co3O4 Nbs were well characterized via UV-vis spectrophotometry, scanning electron microscopy, and X-ray diffraction techniques. Green-synthesized Co3O4 Nbs were exposed over Acacia jacquemontii and Acacia nilotica at different concentrations (25, 50, 75, and 100 ppm). Highly significant results were observed for plant growth by the application of Co3O4 Nbs at 100 ppm, thereby increasing the root length (35%), shoot length (48%), fresh weight (44%), and dry weight (40%) of the Acacia species with respect to the control. Furthermore, physiological parameters including chlorophyll contents, relative water contents, and osmolyte contents like proline and sugar showed a prominent increase. The antioxidant activity and atomic absorption supported and justified the positive response to using Co3O4 Nbs that mitigated the heavy-metal zinc stress by improving the plant growth. Hence, the biocompatible Co3O4 Nbs counteract the zinc toxicity for governing and maintaining plant growth. Such nanotechnological tools can therefore step up the cropping system and overcome toxicity to meet the productivity demand along with the development of agricultural management strategies.

7.
J Biotechnol ; 365: 1-10, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36708999

RESUMO

Herein, silver and zinc oxide Nanoparticles (NPs) were synthesized by using W. coagulant fruit extract as reducing agent and capping agent. The green synthesized NP with distinct properties were used for novel application against fungal and bacterial pathogen of honey bee (A. mellifera). The UV-spectroscopy confirms the synthesis of silver and zinc oxide NPs at 420 nm and 350 nm respectively. Further, XRD evaluated the monoclinic structure of Ag NPs while ZnO NPs showed wurtzite hexagonalcrystlized structure. Resistant honey bee pathogens such Paenibacilluslarvae, Melissococcus plutonius and Ascosphaera apis were isolated, identified and cultured in vitro to assess the antimicrobial potentials of Ag and ZnO NPs. Additionally, different biomolecules provide access to achieve maximum and stable Ag and ZnO NPs. It was also observed that with increasing the concentration of zinc oxide NPs and sliver NPs, zone of inhibition was also increased. Thus, present findings show that plant extracts can be a useful natural resource to prepare functional nonmaterial for targeted applications especially in the field of apicultural research.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Abelhas , Animais , Zinco/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
8.
Appl Biochem Biotechnol ; 195(1): 264-282, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36074235

RESUMO

Physical and chemical methods for production of nanoparticles (NPs) are not only harmful for environment but also toxic for living organism. The present study attempts to synthesize ZnO NPs using the natural plant extract of Fagonia cretica. The phytochemical screening of F. cretica water extract was performed to check the presence of biologically active compounds like alkaloids, tannins, carbohydrates, proteins, phenols, saponins, flavonoids, and steroids. Well-prepared ZnO NPs given sharp absorption peak at 362 were confirmed by UV-visible. XRD analysis showed the ZnO NPs having wurtzite hexagonal structure with crystalline form. TEM analysis endorses flower-shaped ZnO nanoparticles ~ 100-1000 nm. FTIR spectrum suggested the involvement of phenolic groups and amino acids and amide linkages in protein performs as the stabilizing agent in the synthesis of ZnO NPs. The ZnO NPs showed strong antibacterial behavior against two bacterial strains Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. In addition, ZnO NPs exhibited strong antioxidant activity of 79%:85.6%:89.9% at 5 µg/mL:10 µg/mL:5 µg/mL concentration of ZnO NPs respectively. This work indicates that Fagonia is considered to be appropriate and promising candidate for extending the innovative applications in the field of medicine and industry and also helpful and useful to the scientific communities.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Bactérias/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
ACS Omega ; 7(39): 34770-34778, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211074

RESUMO

Green nanotechnology facilitates the blooming of zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) with distinct flowerlike and spherical morphologies, respectively. The well-characterized NPs with an average size of 35 nm (ZnO) and 25 nm (Ag) were functionalized on the cresty plates for antibacterial inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, with the flowerlike ZnONPs exhibiting 90.9% inhibition and AgNPs exhibiting 100% inhibition. Further, the in vivo underwater troughs for hematological, immunological, and serological analysis in Labeo rohita exhibited 102 > 575 > 104 and 206 > 109 > 81% at concentrations of 1, 2, and 3 mg/L with 4-day and 15-day treatment, respectively, over ZnONPs. However, AgNPs exhibited 257 > 408 > 124 and 86 > 202 > 43% with 4-day and 15-day treatment, respectively, at the same concentrations. The classical ZnNPs and AgNPs exhibited excellent inhibition potential and significant transfiguration of hematological, enzymological, and protein parameters as safe nanomedicine, but ZnONPs were found to be 58, 69, 29 and 34, 51, 70% more active than AgNPs with 4-day and 15-day treatment, respectively. Therefore, the onset of ROX and antioxidant arena favors beneficial cellular drifting of NPs.

10.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144499

RESUMO

Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.


Assuntos
Nanopartículas , Coroa de Proteína , Difosfato de Adenosina , Trifosfato de Adenosina , Cálcio , Compostos Inorgânicos de Carbono , Análise por Conglomerados , Guanosina Trifosfato , Compostos de Ferro , Nanopartículas/química , Coroa de Proteína/química , Proteínas/metabolismo , Proteômica/métodos , RNA
11.
ACS Omega ; 7(51): 47996-48006, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591177

RESUMO

The nanotechnological arena has revolutionized the diagnostic efficacies by investigating the protein corona. This displays provoking proficiencies in determining biomarkers and diagnostic fingerprints for early detection and advanced therapeutics. The green synthesized iron oxide nanoparticles were prepared via Withania coagulans and were well characterized using UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and nano-LC mass spectrophotometry. Iron oxides were rod-shaped with an average size of 17.32 nm and have crystalline properties. The as-synthesized nanotool mediated firm nano biointeraction with the proteins in treatment with nine different cancers. The resultant of the proteome series was filtered oddly that highlighted the variant proteins within the differentially expressed proteins on behalf of nano-bioinformatics. Further magnification focused on S13_N, RS15, RAB, and 14_3_3 domains and few abundant motifs that aid scanning biomarkers. The entire set of variant proteins contracting to common proteins elucidates the underlining mechanical proteins that are marginally assessed using the robotic nanotechnology. Additionally, the iron rods indirectly possess a prognostic effect in manipulating expression of proteins through a smarter route. Thereby, such biologically designed nanotools provide a dual approach for medical studies.

12.
Bioconjug Chem ; 33(6): 1011-1034, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793138

RESUMO

Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.


Assuntos
Neoplasias , Humanos , Fatores Imunológicos/farmacologia , Imunoterapia , Nanomedicina , Nanotecnologia , Neoplasias/patologia , Microambiente Tumoral
13.
Colloids Surf B Biointerfaces ; 203: 111746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33839473

RESUMO

Harvesting the low molecular weight (LMW) proteins from the cellular exudates is a big challenge for early disease detection. Here, we introduce a unique probe composed of surface-functionalized Fe2C NPs with different functional groups to harvest, identify and profile differentially expressed biomarker proteins. Three different functionalization of Fe2C NPs with Fe2C@NH2, Fe2C@COOH and Fe2C@PEG enabled to harvest 119 differentially expressed proteins from HeLa cell exudates. Among these proteins, 57 were LMW which 82.46 % were up-regulated and 17.54 % were down-regulated. The Fe2C@NH2 were able to separate 60S ribosomal proteins L7a, and L11, and leucine-rich repeat-containing protein 59. These proteins play a vital role in the maturation of large subunit ribosomal ribonucleic acid, mRNA splicing via spliceosome and cancer cell inhibitor, respectively. While, Fe2C@COOH identifies the 60S ribosomal protein types L7, 40S ribosomal protein S11, and 60S ribosomal protein L24. These proteins were important for large ribosomal subunit biogenesis, translational initiation, and assembly of large subunit precursor of pre-ribosome. Finally, the Fe2C@PEG extracted 40S ribosomal protein S2, splicing factor, arginine/serine-rich and 40S ribosomal protein S4, X isoform which were responsible for nonsense-mediated decay, oligodendrocyte differentiation and multicellular organism development. Thus, these results help us in defining oncogenic biomarkers for early disease detection.


Assuntos
Nanopartículas , Proteínas de Saccharomyces cerevisiae , Compostos Inorgânicos de Carbono , Células HeLa , Humanos , Compostos de Ferro , Peso Molecular , Proteoma
14.
Mater Sci Eng C Mater Biol Appl ; 119: 111280, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321572

RESUMO

Despite of broad range application, the cost effective, highly stable and reproduceable synthesis of ZnO is needed, especially which can make it biosafe as well. Here, a unique bioinspired synthesis of ZnO nanoflowers (NFs) has been introduced using Withania coagulans extract as reducing agent. Different molar concentrations were assessed to counter the effect of structural, morphological, antibacterial activity and high efficiency of algae harvesting. The UV-spectroscopy authenticates the synthesis of ZnO NFs having Wurtzite hexagonal structure with the size in the range of 360-550 nm. While surface analysis revealed the presence of stabilizing agent like phenolic, amine, etc. on surface of ZnO NFs. These perineum ZnO NFs exhibited a stronger antibacterial with Gram-positive bacteria Staphylococcus aureus as compare to Gram-negative bacteria Pseudomonas aeruginosa and greater harvesting efficiency up to 94% on the account of greater surface area and unique surface chemistry, thus leading a new horizon of more efficient and effective applications for ethanol production.


Assuntos
Óxido de Zinco , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Óxido de Zinco/farmacologia
15.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751780

RESUMO

Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions were tested for activity in the biogenic synthesis of cobalt oxide nanoparticles, biofilm and antifungal activities. The results revealed that plant extract with bioactive fractions in 30% ratio for all solvent combinations showed more potent bioreducing power, according to the observed color changes and the appearance of representative absorption peaks at 500-510 nm in the UV-visible spectra which confirm the synthesis of cobalt oxide nanoparticles (Co3O4 NPs). XRD diffraction was used to define the crystal structure, size and phase composition of the products. The fractions obtained using 90% methanol/hexane and 30% methanol/hexane showed more effectiveness against biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus so these fractions could potentially be used to treat bacterial infections. The 90% hexane/H2O fraction showed excellent antifungal activity against Aspergillus niger and Candida albicans, while the 70% methanol/hexane fraction showed good antifungal activity for C. albicans, so these fractions are potentially useful for the treatment of various fungal infections. On the whole it was concluded that fractionation based on effective combinations of methanol/hexane was useful to investigate and study bioactive compounds, and the active compounds from these fractions may be further purified and tested in various clinical trials.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Cobalto/química , Nanopartículas Metálicas/química , Óxidos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Withania/química , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fracionamento Químico/métodos , Hexanos/química , Metanol/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Solventes/química , Staphylococcus aureus/efeitos dos fármacos
16.
J Photochem Photobiol B ; 204: 111784, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954266

RESUMO

Present work compares the green synthesis of iron oxide nanorodes (NRs) using Withania coagulans and reduction precipitation based chemical method. UV/Vis confirmed the sharp peak of Iron oxide NRs synthesized by biologically and chemically on 294 and 278 nm respectively. XRD and SEM showed highly crystalline nature of NRs with average size 16 ± 2 nm using Withania extract and less crystalline with amorphous Nanostructure of 18 ± 2 nm by chemical method. FTIR analysis revealed the involvement of active bioreducing and stabilizing biomolecules in Withania coagulans extract for synthesis of NRs. Moreover, EDX analysis indicates 34.91% of Iron oxide formation in biological synthesis whereas 25.8% of iron oxide synthesis in chemical method. The degradation of safranin dye in the presence of Withania coagulans based NRs showed 30% more effectively than chemically synthesized Nanorods which were verified by the gradual decrease in the peak intensity at 553 nm and 550 nm respectively under solar irradiation. Furthermore, Withania coagulans based NRs showed effective Antibacterial activity against S.aureus and P. aeuroginosa as compared to NRs by chemical method. Finally, we conclude that green synthesized NRs are more effective and functionally more efficient than chemically prepared NRs. Therefore, our work will help the researchers to boost the synthesis of nanoparticles via biological at commercial level.


Assuntos
Antibacterianos/química , Compostos Férricos/química , Nanotubos/química , Extratos Vegetais/química , Withania/química , Antibacterianos/farmacologia , Catálise , Química Verde , Nanotubos/toxicidade , Fenazinas/química , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Luz Solar , Withania/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...