Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Protoc Protein Sci ; 91: 5.29.1-5.29.23, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29516483

RESUMO

In this work, we describe a novel self-cleaving tag technology based on a highly modified split-intein cleaving element. In this system, the N-terminal segment of an engineered split intein is expressed in E. coli and covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong association between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. Once the complex is purified by washing the column, intein-mediated cleavage and release of the tagless target is induced with a simple shift in buffer pH from 8.5 to 6.2. The result is a convenient and effective method for the purification of traceless and tagless target proteins, which can be used in characterization and functional studies. © 2018 by John Wiley & Sons, Inc.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Inteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/genética
3.
Methods Mol Biol ; 1737: 373-391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484604

RESUMO

RNA biology and RNA engineering are subjects of growing interest due to recent advances in our understanding of the diverse cellular functions of RNAs, including their roles as genetic regulators. The noncoding small RNAs (sRNAs) of bacteria are a fundamental basis of regulatory control that can regulate gene expression via antisense base-pairing to one or more target mRNAs. The sRNAs can be customized to generate a range of mRNA translation rates and stabilities. The sRNAs can be applied as a platform for metabolic engineering, to control expression of genes of interest by following relatively straightforward design rules (Kushwaha et al., ACS Synth Biol 5:795-809, 2016). However, the ab initio design of functional sRNAs to precise specifications of gene control is not yet possible. Consequently, there is a need for tools to rapidly profile uncharacterized sRNAs in vivo, to screen sRNAs against "new/novel" targets, and (in the case of metabolic engineering) to develop engineered sRNAs for regulatory function against multiple desired mRNA targets. To address this unmet need, we previously constructed a modular genetic system for assaying sRNA activity in vivo against specifiable mRNA sequences, using microtiter plate assays for high-throughput productivity. This sRNA design platform consists of three modular plasmids: one plasmid contains an inducible sRNA and the RNA chaperone Hfq; the second contains an inducible fluorescent reporter protein and a LacY mutant transporter protein for inducer molecules; and the third plasmid contains a second inducible fluorescent reporter protein. The second reporter gene makes it possible to screen for sRNA regulators that have activity against multiple mRNAs. We describe the protocol for engineering sRNAs with novel regulatory activity using this system. This sRNA prototyping regimen could also be employed for validating predicted mRNA targets of uncharacterized, naturally occurring sRNAs or for testing hypotheses about the predicted roles of genes, including essential genes, in cellular metabolism and other processes, by using customized antisense sRNAs to knock down or tune down gene expression.


Assuntos
Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes , Genes Reporter , Engenharia Genética/métodos , Ensaios de Triagem em Larga Escala/métodos , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescência , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/genética , Plasmídeos , RNA Bacteriano/química , RNA Bacteriano/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Homologia de Sequência
4.
Biotechnol Bioeng ; 115(1): 92-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843001

RESUMO

The use of cell-free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell-free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell-free system using instrumented mini-bioreactors for highly reproducible protein production. We achieved recombinant protein production (∼600 µg/ml of tGFP and 500 µg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell-free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag-free self-cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose-level production of therapeutic proteins at the point-of-care.


Assuntos
Sistema Livre de Células , Misturas Complexas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Estreptoquinase/biossíntese , Estreptoquinase/isolamento & purificação , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Recombinantes/genética , Estreptoquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...