Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 6: 189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508419

RESUMO

Nephrotic syndrome is one of the most common glomerular diseases in children and can be classified on the basis of steroid responsiveness. While multiple genetic causes have been discovered for steroid resistant nephrotic syndrome, the genetics of steroid sensitive nephrotic syndrome remains elusive. Mutations in Epithelial Membrane Protein 2 (EMP2), a member of the GAS3/PMP22 tetraspan family of proteins, were recently implicated as putative monogenic cause of steroid sensitive nephrotic syndrome. We investigated this hypothesis by developing Emp2 reporter and knockout mouse models. In lacZ reporter mice (engineered to drive expression of the enzyme ß-galactosidase under the control of the endogenous murine Emp2 promoter), Emp2 promoter activity was not observed in podocytes but was particularly prominent in medium- and large-caliber arterial vessels in the kidney and other tissues where it localizes specifically in vascular smooth muscle cells (vSMCs) but not in the endothelium. Strong Emp2 expression was also found in non-vascular smooth muscle cells found in other organs like the stomach, bladder, and uterus. Global and podocyte-specific Emp2 knockout mice were viable and did not develop nephrotic syndrome showing no evidence of abnormal glomerular histology or ultrastructure. Altogether, our results do not support that loss of function of EMP2 represent a monogenic cause of proteinuric kidney disease. However, the expression pattern of Emp2 indicates that it may be relevant in smooth muscle function in various organs and tissues including the vasculature.

2.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252520

RESUMO

The epithelial sodium channel (ENaC) has a key role in modulating endothelial cell stiffness and this in turn regulates nitric oxide (NO) synthesis. The physiological relevance of endothelial ENaC in pathological conditions where reduced NO bioavailability plays an essential role remains largely unexplored. Renal ischemia/reperfusion (IR) injury is characterized by vasoconstriction and sustained decrease in renal perfusion that is partially explained by a reduction in NO bioavailability. Therefore, we aimed to explore if an endothelial ENaC deficiency has an impact on the severity of renal injury induced by IR. Male mice with a specific endothelial sodium channel α (αENaC) subunit gene inactivation in the endothelium (endo-αENaCKO) and control littermates were subjected to bilateral renal ischemia of 22 min and were studied after 24 h of reperfusion. In control littermates, renal ischemia induced an increase in plasma creatinine and urea, augmented the kidney injury molecule-1 (Kim-1) and neutrophil gelatinase associated lipocalin-2 (NGAL) mRNA levels, and produced severe tubular injury. The absence of endothelial αENaC expression prevented renal tubular injury and renal dysfunction. Moreover, endo-αENaCKO mice recovered faster from renal hypoxia after the ischemia episode as compared to littermates. In human endothelial cells, pharmacological ENaC inhibition promoted endothelial nitric oxide synthase (eNOS) coupling and activation. Altogether, these data suggest an important role for endothelial αENaC in kidney IR injury through improving eNOS activation and kidney perfusion, thus, preventing ischemic injury.


Assuntos
Canais Epiteliais de Sódio/genética , Traumatismo por Reperfusão/metabolismo , Animais , Células Cultivadas , Canais Epiteliais de Sódio/deficiência , Receptor Celular 1 do Vírus da Hepatite A/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Lipocalina-2/genética , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Traumatismo por Reperfusão/genética
3.
J Exp Med ; 216(4): 936-949, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30886059

RESUMO

Diabetic nephropathy is a leading cause of end-stage kidney failure. Reduced angiopoietin-TIE2 receptor tyrosine kinase signaling in the vasculature leads to increased vascular permeability, inflammation, and endothelial cell loss and is associated with the development of diabetic complications. Here, we identified a mechanism to explain how TIE2 signaling is attenuated in diabetic animals. Expression of vascular endothelial protein tyrosine phosphatase VE-PTP (also known as PTPRB), which dephosphorylates TIE2, is robustly up-regulated in the renal microvasculature of diabetic rodents, thereby reducing TIE2 activity. Increased VE-PTP expression was dependent on hypoxia-inducible factor transcriptional activity in vivo. Genetic deletion of VE-PTP restored TIE2 activity independent of ligand availability and protected kidney structure and function in a mouse model of severe diabetic nephropathy. Mechanistically, inhibition of VE-PTP activated endothelial nitric oxide synthase and led to nuclear exclusion of the FOXO1 transcription factor, reducing expression of pro-inflammatory and pro-fibrotic gene targets. In sum, we identify inhibition of VE-PTP as a promising therapeutic target to protect the kidney from diabetic injury.


Assuntos
Nefropatias Diabéticas/metabolismo , Receptor TIE-2/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/metabolismo , RNA Interferente Pequeno/genética
4.
Front Pharmacol ; 9: 178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692722

RESUMO

The role of epithelial sodium channel (ENaC) activity in the regulation of endothelial function is not clear. Here, we analyze the role of ENaC in the regulation of endothelium-dependent vasodilation and endothelial permeability in vivo in mice with conditional αENaC subunit gene inactivation in the endothelium (endo-αENaCKO mice) using unique MRI-based analysis of acetylcholine-, flow-mediated dilation and vascular permeability. Mice were challenged or not with lipopolysaccharide (LPS, from Salmonella typhosa, 10 mg/kg, i.p.). In addition, changes in vascular permeability in ex vivo organs were analyzed by Evans Blue assay, while changes in vascular permeability in perfused mesenteric artery were determined by a FITC-dextran-based assay. In basal conditions, Ach-induced response was completely lost, flow-induced vasodilation was inhibited approximately by half but endothelial permeability was not changed in endo-αENaCKO vs. control mice. In LPS-treated mice, both Ach- and flow-induced vasodilation was more severely impaired in endo-αENaCKO vs. control mice. There was also a dramatic increase in permeability in lungs, brain and isolated vessels as evidenced by in vivo and ex vivo analysis in endotoxemic endo-αENaCKO vs. control mice. The impaired endothelial function in endotoxemia in endo-αENaCKO was associated with a decrease of lectin and CD31 endothelial staining in the lung as compared with control mice. In conclusion, the activity of endothelial ENaC in vivo contributes to endothelial-dependent vasodilation in the physiological conditions and the preservation of endothelial barrier integrity in endotoxemia.

5.
PLoS One ; 12(9): e0185319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28950003

RESUMO

The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α ß Î³ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldosterone-modulated endothelial stiffness. Here we explore the functional role of the endothelial αENaC subunit in vascular function in vivo. Compared to littermates, mice with conditional αENaC subunit gene inactivation in the endothelium only (endo-αENaC Knock Out mice) had no difference in their physiological parameters such as systolic blood pressure or heart rate. Acute and long-term renal Na+ handlings were not affected, indicating that endothelial αENaC subunit is not involved in renal sodium balance. Pharmacological inhibition of ENaC with benzamil blunted acetylcholine-induced nitric oxide production in mesenteric arteries from wild type mice but not in endo-αENaC KO mice, suggesting a critical role of endothelial ENaC in agonist-induced nitric oxide production. In endo-αENaC KO mice, compensatory mechanisms occurred and steady state vascular function was not altered except for flow-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo.


Assuntos
Endotélio Vascular/fisiologia , Canais Epiteliais de Sódio/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
6.
Hypertension ; 66(1): 158-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987661

RESUMO

Activation of the mineralocorticoid receptor has been shown to be deleterious in cardiovascular diseases (CVDs). We have recently shown that lipocalin 2 (Lcn2), or neutrophil gelatinase-associated lipocalin (NGAL), is a primary target of aldosterone/mineralocorticoid receptor in the cardiovascular system. Lcn2 is a circulating protein, which binds matrix metalloproteinase 9 and modulates its stability. We hypothesized that Lcn2 could be a mediator of aldosterone/mineralocorticoid receptor profibrotic effects in the cardiovascular system. Correlations between aldosterone and profibrotic markers, such as procollagen type I N-terminal peptide, were investigated in healthy subjects and subjects with abdominal obesity. The implication of Lcn2 in the mineralocorticoid pathway was studied using Lcn2 knockout mice subjected to a nephrectomy/aldosterone/salt (NAS) challenge for 4 weeks. In human subjects, NGAL/matrix metalloproteinase 9 was positively correlated with plasma aldosterone and fibrosis biomarkers. In mice, loss of Lcn2 prevented the NAS-induced increase of plasma procollagen type I N-terminal peptide, as well as the increase of collagen fibers deposition and collagen I expression in the coronary vessels and the aorta. The lack of Lcn2 also blunted the NAS-induced increase in systolic blood pressure. Ex vivo, treatment of human fibroblasts with recombinant Lcn2 induced the expression of collagen I and the profibrotic galectin-3 and cardiotrophin-1 molecules. Our results showed that Lcn2 plays a key role in aldosterone/mineralocorticoid receptor-mediated vascular fibrosis. The clinical data indicate that this may translate in human patients. Lcn2 is, therefore, a new biotarget in cardiovascular fibrosis induced by mineralocorticoid activation.


Assuntos
Proteínas de Fase Aguda/fisiologia , Aldosterona/toxicidade , Lipocalinas/fisiologia , Obesidade Abdominal/fisiopatologia , Proteínas Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Fase Aguda/deficiência , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/farmacologia , Aldosterona/sangue , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Cardiomiopatia Hipertrófica/induzido quimicamente , Cardiomiopatia Hipertrófica/fisiopatologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Feminino , Fibroblastos , Fibrose , Galectina 3/biossíntese , Galectina 3/sangue , Galectina 3/genética , Humanos , Hipertensão/fisiopatologia , Hipertrofia , Rim/patologia , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Lipocalinas/farmacologia , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Nefrectomia/efeitos adversos , Obesidade Abdominal/sangue , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/farmacologia , Ratos , Proteínas Recombinantes/farmacologia
7.
Curr Opin Pharmacol ; 21: 138-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25733376

RESUMO

The mineralocorticoid receptor (MR) is a major regulator of blood pressure by modulating sodium balance and blood volume in the distal nephron. The discovery of MR expression in both endothelial and vascular smooth muscle cells a decade ago raised questions about its role in the vascular wall and its involvement in blood pressure regulation. In vitro and in vivo pharmacological studies have shown that vascular MR is involved in several vascular properties such as extracellular matrix remodeling, inflammation and vascular reactivity. In this review, we focus on recent advances obtained using transgenic model with cell-specific modulation of the expression MR in endothelium or smooth muscle and their impact on blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Receptores de Mineralocorticoides/fisiologia , Animais , Endotélio Vascular/fisiologia , Humanos , Miócitos de Músculo Liso/fisiologia
8.
J Am Heart Assoc ; 4(1): e001266, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564371

RESUMO

BACKGROUND: Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. METHODS AND RESULTS: Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone-regulated genes were involved in cell division. The cardiac Ki-67 index (an index of proliferation) of aldosterone-treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki-67 with vinculin, CD68, α-smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone-induced mineralocorticoid receptor-dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological-specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). CONCLUSIONS: Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo.


Assuntos
Aldosterona/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Análise de Variância , Animais , Pressão Sanguínea/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Estatísticas não Paramétricas
9.
Pflugers Arch ; 467(8): 1643-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25262754

RESUMO

Identification of the mineralocorticoid receptor (MR) in the vasculature (i.e., endothelial and smooth muscle cells) raised the question of its role in vascular function and blood pressure control. Using a mouse model with conditional inactivation of MR in vascular smooth muscle cell (VSMC) (MR(SMKO)), we have recently shown that the VSMC MR is crucial for aldosterone-salt-induced carotid stiffening. In the present study, we have investigated the specific contribution of the VSMC MR in the regulation of vascular tone in large vessels. In MR(SMKO) mice, contractions induced by potassium chloride and calcium (Ca(2+)) are decreased in the aorta, whereas contraction is normal in response to phenylephrine and caffeine. The difference in response to Ca(2+) suggests that the VSMC-specific deficiency of the MR modifies VSM Ca(2+) signaling but without altering the intracellular Ca(2+) store handling. The relaxation induced by acetylcholine is not affected by the absence of MR. However, the relaxation induced by Ach in the presence of indomethacin and the relaxation induced by sodium nitroprussiate are significantly reduced in MR(SMKO) mice compared to controls. Since endothelial nitric oxide synthase (eNOS) activity is increased in mutant mice, their altered relaxation reflects impairment of the nitric oxide (NO) signaling pathway. In addition to altered NO and Ca(2+) signaling, the activity of myosin light chain and its regulators, myosin light chain kinase (MLCK) and myosin phosphatase (MLCP), is reduced. In conclusion, MR expressed in VSMC is required for NO and Ca(2+) signaling pathways and contractile protein activity leading to an altered contraction/relaxation coupling.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Mineralocorticoides/metabolismo , Vasoconstrição , Vasodilatação , Animais , Aorta Abdominal/metabolismo , Relação Dose-Resposta a Droga , Acoplamento Excitação-Contração , Técnicas In Vitro , Masculino , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de Mineralocorticoides/deficiência , Receptores de Mineralocorticoides/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Curr Opin Nephrol Hypertens ; 23(2): 143-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378777

RESUMO

PURPOSE OF REVIEW: Approximately 20 years ago, a paradigm shift occurred questioning whether expression of the epithelial Na⁺ channel (ENaC) was mainly restricted to epithelial tissues. In this review, the recent findings of ENaC regulation, and its potential contributions to the function and dysfunction of the vasculature, is discussed. RECENT FINDINGS: Over the last few years, the expression, localization, and functional properties of ENaC have been determined in the two main vascular cell types: endothelial cells, and vascular smooth muscle cells. A chronically increased ENaC membrane abundance can lead to endothelial stiffening and to a reduced release of nitric oxide, the hallmark of endothelial dysfunction. Endothelial ENaC was shown to determine vasoconstriction by negatively modulating nitric oxide release in mesenteric arteries, likely via the PI3K/Akt signaling pathway. ENaC has therefore been recognized as a potentially important regulator of vascular nanomechanics and as a transducer of mechanical forces. SUMMARY: As ENaC expression is broader than anticipated, it has become clear that the protein may play a crucial role in the vasculature as it is located at the interface between blood and tissue, and is therefore implicated in the development of endothelial dysfunction and hypertension.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sódio/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Mecanotransdução Celular , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Mecânico
11.
Nat Rev Nephrol ; 10(3): 146-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419567

RESUMO

Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.


Assuntos
Amilorida/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/metabolismo , Canais Epiteliais de Sódio/efeitos dos fármacos , Néfrons/metabolismo , Transporte Biológico , Endotélio Vascular/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Humanos
12.
PLoS One ; 8(9): e73737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040049

RESUMO

Aldosterone binds to the mineralocorticoid receptor (MR) and exerts pleiotropic effects beyond enhancing renal sodium reabsorption. Excessive mineralocorticoid signaling is deleterious during the evolution of cardiac failure, as evidenced by the benefits provided by adding MR antagonists (MRA) to standard care in humans. In animal models of cardiovascular diseases, MRA reduce cardiac fibrosis. Interestingly diuretics such as torasemide also appear efficient to improve cardiovascular morbidity and mortality, through several mechanisms. Among them, it has been suggested that torasemide could block aldosterone binding to the MR. To evaluate whether torasemide acts as a MRA in cardiomyocytes, we compared its effects with a classic MRA such as spironolactone. We monitored ligand-induced nuclear translocation of MR-GFP and MR transactivation activity in the cardiac-like cell line H9C2 using a reporter gene assay and known endogenous aldosterone-regulated cardiac genes. Torasemide did not modify MR nuclear translocation. Aldosterone-induced MR transactivation activity was reduced by the MRA spironolactone, not by torasemide. Spironolactone blocked the induction by aldosterone of endogenous MR-responsive genes (Sgk-1, PAI-1, Orosomucoid-1, Rgs-2, Serpina-3, Tenascin-X), while torasemide was ineffective. These results show that torasemide is not an MR antagonist; its association with MRA in heart failure may however be beneficial, through actions on complementary pathways.


Assuntos
Aldosterona/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Sulfonamidas/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Diuréticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Luciferases/genética , Luciferases/metabolismo , Camundongos , Microscopia Confocal , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Orosomucoide/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Receptores de Mineralocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/genética , Espironolactona/farmacologia , Tenascina/genética , Torasemida , Ativação Transcricional/efeitos dos fármacos
13.
Clin Exp Pharmacol Physiol ; 40(12): 910-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23888997

RESUMO

Mineralocorticoid receptor (MR) activation has been shown to play a deleterious role in the development of heart disease in studies using specific MR antagonists (spironolactone, eplerenone) in both experimental models and patients. Pharmacological MR blockade attenuates the transition to heart failure (HF) in models of systolic left ventricular dysfunction and myocardial infarction, as well as diastolic dysfunction, in rats and mice. In humans, MR antagonism is highly beneficial in patients with mild or advanced HF and postinfarct HF. The consequences of aldosterone and MR activation for cardiac arrhythmia and its prevention and/or correction by MR antagonists are often underestimated. Activation of MR modulates cardiac electrical activity, causing atrial and ventricular arrhythmias. A pro-arrhythmogenic effect of aldosterone (possibly partly dependent on fibrosis) has been suggested by several studies. Cardiac MR activation has important consequences for the control of cellular calcium homeostasis, action potential lengthening, modulation of calcium transients and sarcoplasmic reticulum diastolic leaks, resulting in the promotion of rhythm disorders. Aldosterone and/or MR activation (in both cardiomyocytes and coronary vessels) result in vascular dysfunction and also contribute to pro-arrhythmogenic conditions. Together, the pro-arrhythmic effects of aldosterone and/or MR may explain the highly beneficial effect of MR antagonism, namely a decrease in the incidence of sudden death, observed in the Randomized Aldactone Evaluation Study (RALES) and Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) studies.


Assuntos
Arritmias Cardíacas/metabolismo , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/patologia , Fibrilação Atrial/etiologia , Fibrilação Atrial/patologia , Fibrilação Atrial/prevenção & controle , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Morte Súbita Cardíaca/prevenção & controle , Fibrose , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Hypertension ; 61(5): 1053-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23460285

RESUMO

Liddle syndrome, an inherited form of hypertension, is caused by gain-of-function mutations in the epithelial Na(+) channel (ENaC), the principal mediator of Na(+) reabsorption in the kidney. Accordingly, the disease pathology was ascribed to a primary renal mechanism. Whether this is the sole responsible mechanism, however, remains uncertain as dysregulation of ENaC in other tissues may also be involved. Previous work indicates that ENaC in the vascular endothelium is crucial for the regulation of cellular mechanics and thus vascular function. The hormone aldosterone has been shown to concomitantly increase ENaC surface expression and stiffness of the cell cortex in vascular endothelial cells. The latter entails a reduced release of the vasodilator nitric oxide, which eventually leads to an increase in vascular tone and blood pressure. Using atomic force microscopy, we have found a direct correlation between ENaC surface expression and the formation of cortical stiffness in endothelial cells. Stable knockdown of αENaC in endothelial cells evoked a reduced channel surface density and a lower cortical stiffness compared with the mock control. In turn, an increased αENaC expression induced an elevated cortical stiffness. More importantly, using ex vivo preparations from a mouse model for Liddle syndrome, we show that this disorder evokes enhanced ENaC expression and increased cortical stiffness in vascular endothelial cells in situ. We conclude that ENaC in the vascular endothelium determines cellular mechanics and hence might participate in the control of vascular function.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Canais Epiteliais de Sódio/metabolismo , Hipertensão/fisiopatologia , Síndrome de Liddle/fisiopatologia , Rigidez Vascular/fisiologia , Animais , Aorta/metabolismo , Aorta/patologia , Células Cultivadas , Modelos Animais de Doenças , Canais Epiteliais de Sódio/deficiência , Canais Epiteliais de Sódio/genética , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Técnicas In Vitro , Síndrome de Liddle/metabolismo , Síndrome de Liddle/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia de Força Atômica , Óxido Nítrico/metabolismo , Interferência de RNA/fisiologia
15.
Hypertension ; 61(2): 361-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23297371

RESUMO

Inappropriate mineralocorticoid receptor (MR) activation is involved in cardiac diseases. Whether and how aldosterone is involved in the deleterious effects of cardiac mineralocorticoid activation is still unclear. Mice overexpressing MR in cardiomyocytes and their controls were treated for 7 days with aldosterone, and cardiac transcriptome was analyzed. Aldosterone regulated 265 genes in cardiomyocyte-targeted MR overexpression mice. Forty three of these genes were also differentially expressed between untreated cardiomyocyte-targeted MR overexpression and controls mice, thus representing putative aldosterone-regulated genes in cardiomyocytes. Among these genes, we focused on connective tissue growth factor (CTGF). In vivo, in cardiomyocyte-targeted MR overexpression mice, aldosterone (but not corticosterone) induced CTGF expression (mRNA and protein) in cardiomyocytes. Ex vivo, aldosterone induced the binding of mineralocorticoid receptor to CTGF promoter and increased the expression of its transcript. Aldosterone induction of CTGF synthesis in cardiomyocytes seems pathologically relevant as the increase in CTGF observed in a model of heart failure (transverse aortic constriction) in rats was prevented by eplerenone, a mineralocorticoid receptor blocker. This study demonstrates that aldosterone specifically regulates gene expression in cardiomyocytes despite large prevalence of glucocorticoids in plasma.


Assuntos
Aldosterona/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Eplerenona , Camundongos , Camundongos Transgênicos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/genética , Espironolactona/análogos & derivados , Espironolactona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...