Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 29(26): 265802, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28498111

RESUMO

Temperature dependent 55Mn NMR study of Sm0.55Sr0.45MnO3 is reported. Previous bulk magnetization measurements have shown that below T C ~ 125 K the sample is ferromagnetic metallic (FMM) and above TC it is charge ordered and insulating. In present report, we show that from zero-field NMR a single line double-exchange (DE) signal is observed at temperatures up to 139 K, which is due to a presence of FMM clusters also above T C. The intensity of the DE line follows the temperature dependence of the magnetization measured at 0.01 T. When a magnetic field up to 2 T is applied at 139 K (i.e. 14 K above T C), a strong increase in NMR intensity of the DE line is observed indicating that content of FMM regions increases. This reveals that metallicity is induced in the material by the applied magnetic field and explains the observed colossal magnetoresistance (CMR) effect at the microscopic level. The observation agrees with previous results, which confirm that the percolation of the FMM clusters is responsible for the CMR effect. The shift of the resonant frequency in the applied field is three times smaller compared to decrease expected from gyromagnetic ratio, which indicates an antiferromagnetic coupling between the FMM clusters.

2.
J Phys Condens Matter ; 25(5): 055603, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23300186

RESUMO

Following the controversy between two previous publications (Lorenzo et al 2008 Phys. Rev. Lett. 101 226401 and Garcia et al 2009 Phys. Rev. Lett. 102 176405), we report on the influence of mechanical polishing, and subsequent sample storage, on the electronic order at the Verwey transition of highly pure magnetite, Fe(3)O(4), by resonant x-ray scattering. Contrary to expectations, mechanically polishing the surface induces an inhomogeneous micron deep dead layer, probably of powdered Fe(3)O(4). In addition, we have found that polishing the sample immediately before the experiment influences and favors the appearance of long range order electronic correlations, whereas samples polished well in advance have their electronic order quenched. Conversely, lattice distortions associated with the Verwey transition appear less affected by the surface state. We conclude that mechanical polishing induces stresses at the surface that may propagate into the core of the single crystal sample. These strains relax with time, which affects the different order parameters, as measured by x-ray resonant diffraction.

5.
6.
Phys Rev B Condens Matter ; 49(5): 3492-3495, 1994 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-10011213
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA