Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794420

RESUMO

Pruning determines the plant water status due to its effects on the leaf area and thus the irrigation management. The primary aim of this study was to assess the use of high-resolution multispectral imagery to estimate the plant water status through different bands and vegetation indexes (VIs) and to evaluate which is most suitable under different pruning management strategies. This work was carried out in 2021 and 2022 in a commercial Merlot vineyard in an arid area of central Spain. Two different pruning strategies were carried out: mechanical pruning and no pruning. The stem water potential was measured with a pressure chamber (Ψstem) at two different solar times (9 h and 12 h). Multispectral information from unmanned aerial vehicles (UAVs) was obtained at the same time as the field Ψstem measurements and different vegetation indexes (VIs) were calculated. Pruning management significantly determined the Ψstem, bunch and berry weight, number of bunches, and plant yield. Linear regression between the Ψstem and NDVI presented the tightest correlation at 12 h solar time (R2 = 0.58). The red and red-edge bands were included in a generalised multivariable linear regression and achieved higher accuracy (R2 = 0.74) in predicting the Ψstem. Using high-resolution multispectral imagery has proven useful in predicting the vine water status independently of the pruning management strategy.

2.
Entropy (Basel) ; 25(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895586

RESUMO

The conversion of native forest into agricultural land, which is common in many parts of the world, poses important questions regarding soil degradation, demanding further efforts to better understand the effect of land use change on soil functions. With the advent of 3D computed tomography techniques and computing power, new methods are becoming available to address this question. In this direction, in the current work we implement a modification of the Fisher-Shannon method, borrowed from information theory, to quantify the complexity of twelve 3D CT soil samples from a sugarcane plantation and twelve samples from a nearby native Atlantic forest in northeastern Brazil. The distinction found between the samples from the sugar plantation and the Atlantic forest site is quite pronounced. The results at the level of 91.7% accuracy were obtained considering the complexity in the Fisher-Shannon plane. Atlantic forest samples are found to be generally more complex than those from the sugar plantation.

3.
Front Plant Sci ; 14: 1327385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162301

RESUMO

Artificial lighting is complementary and single-source lighting for controlled Environment Agriculture (CEA) to increase crop productivity. Installations to control CO2 levels and luminaires with variable spectrum and intensity are becoming increasingly common. In order to see the net assimilation of CO2 based on the relationship between the three factors: intensity, spectrum and CO2 concentration, tests are proposed on tomatoes seedling with combinations of ten spectra (100B, 80B20G, 20B80G, 100G, 80G20R, 20G80R, 100R, 80R20B, 20R80B, 37R36G27B) seven light intensities (30, 90, 200, 350, 500, 700 and 1000 µmol·m-2 s-1) and nine CO2 concentrations (200, 300, 400, 500, 600, 700, 800 and 900 ppm). These tomato seedlings grew under uniform conditions with no treatments applied up to the moment of measurement by a differential gas analyzer. We have developed a model to evaluate and determine under what spectrum and intensity of light photosynthesis the Net assimilation of CO2 (An) is more significant in the leaves of tomato plants, considering the CO2 concentration as an independent variable in the model. The evaluation of the model parameters for each spectrum and intensity shows that the intensity has a more decisive influence on the maximum An rate than the spectra. For intensities lower than 350 µmol·m-2 s-1, it is observed that the spectrum has a greater influence on the variable An. The spectra with the best behaviour were 80R20B and 80B20R, which maintained An values between 2 and 4 (µmol CO2·m-2·s-1) above the spectra with the worst behaviour (100G, 80G20R, 20G80R and 37B36G27R) in practically all situations. Photosynthetic Light-Use Efficiency (PLUE) was also higher for the 80B20R and 20R80B spectra with values of 36,07 and 33,84 mmol CO2·mol photon-1, respectively, for light intensities of 200 µmol·m-2 s-1 and 400 ppm of CO2that increased to values of 49,65 and 48,38 mmol CO2·mol photon-1 for the same light intensity and concentrations of 850 ppm. The choice of spectrum is essential, as indicated by the data from this study, to optimize the photosynthesis of the plant species grown in the plant factory where light intensities are adjusted for greater profitability.

4.
Sci Total Environ ; 803: 149906, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492495

RESUMO

Land use and land cover (LULC) scenarios in rural catchment hydrology are crucial to describe the effects of future water dynamics. However, there is a lack of understanding of the effectiveness of including static land covers at the subbasin level to provide inter-annual stability in changing the different water balance components. We developed a step-by-step mapping protocol to extend and enrich the hydrological assessment of future LULC scenarios defined through participatory stakeholder involvement. This novelty included specific allocation of static and dynamic LULC change among the scenarios and then compared the change of water dynamics to the current situation. For this, we quantified the LULC impact on the components of the water balance from three contrasting participatory scenarios implemented with the SWAT model in a rural basin in central Spain. The Land-sharing scenario (LSH) had the highest percentage of permanent grassland and shrubs and no increase of irrigated land compared to baseline. The land-sparing scenario (LSP) intensified agricultural land use close to urban areas, and the land balance scenario (LBA) was intermediate. The LSH increased the aquifer recharge by +1.7% and streamflow by +1.5%, while evapotranspiration and soil water storage decreased by -0.2%. In contrast, the LBA decreased in the riverine flux of -0.5%, an aquifer recharge of -0.6%, a soil water storage of -3.5%, and an evapotranspiration rate of +0.3%. Thus, LSH revealed that the allocation of permanent land cover such as grassland could buffer water dynamics, suggesting that dedicated planning and allocation of permanently vegetated LULC will favour land and water conservation.


Assuntos
Água Subterrânea , Hidrologia , Agricultura , Conservação dos Recursos Naturais , Solo
5.
Entropy (Basel) ; 23(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067228

RESUMO

Estimates suggest that more than 70% of the world's rangelands are degraded. The Normalized Difference Vegetation Index (NDVI) is commonly used by ecologists and agriculturalists to monitor vegetation and contribute to more sustainable rangeland management. This paper aims to explore the scaling character of NDVI and NDVI anomaly (NDVIa) time series by applying three fractal analyses: generalized structure function (GSF), multifractal detrended fluctuation analysis (MF-DFA), and Hurst index (HI). The study was conducted in four study areas in Southeastern Spain. Results suggest a multifractal character influenced by different land uses and spatial diversity. MF-DFA indicated an antipersistent character in study areas, while GSF and HI results indicated a persistent character. Different behaviors of generalized Hurst and scaling exponents were found between herbaceous and tree dominated areas. MF-DFA and surrogate and shuffle series allow us to study multifractal sources, reflecting the importance of long-range correlations in these areas. Two types of long-range correlation appear to be in place due to short-term memory reflecting seasonality and longer-term memory based on a time scale of a year or longer. The comparison of these series also provides us with a differentiating profile to distinguish among our four study areas that can improve land use and risk management in arid rangelands.

6.
Entropy (Basel) ; 23(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946301

RESUMO

Multiple studies revealed that pasture grasslands are a time-varying complex ecological system. Climate variables regulate vegetation growing, being precipitation and temperature the most critical driver factors. This work aims to assess the response of two different Vegetation Indices (VIs) to the temporal dynamics of temperature and precipitation in a semiarid area. Two Mediterranean grasslands zones situated in the center of Spain were selected to accomplish this goal. Correlations and cross-correlations between VI and each climatic variable were computed. Different lagged responses of each VIs series were detected, varying in zones, the year's season, and the climatic variable. Recurrence Plots (RPs) and Cross Recurrence Plots (CRPs) analyses were applied to characterise and quantify the system's complexity showed in the cross-correlation analysis. RPs pointed out that short-term predictability and high dimensionality of VIs series, as well as precipitation, characterised this dynamic. Meanwhile, temperature showed a more regular pattern and lower dimensionality. CRPs revealed that precipitation was a critical variable to distinguish between zones due to their complex pattern and influence on the soil's water balance that the VI reflects. Overall, we prove RP and CRP's potential as adequate tools for analysing vegetation dynamics characterised by complexity.

7.
ScientificWorldJournal ; 2014: 565174, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003139

RESUMO

New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha(-1) to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.


Assuntos
Solo/química , Resíduos Sólidos/efeitos adversos , Cidades , Fermentação , Concentração de Íons de Hidrogênio , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA