Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2018: 3175313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584460

RESUMO

Wfs1 deficiency leads to a progressive loss of plasma insulin concentration, which should reduce the consumption of glucose in insulin-dependent tissues, causing a variety of changes in intracellular energy metabolism. Our objective here was to assess the changes in the amount and function of mitochondrial proteins in different muscles of Wfs1-deficient mice. Mitochondrial functions were assayed by high-resolution oxygraphy of permeabilized muscle fibers; the protein amount was evaluated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis and mRNA levels of the uncoupler proteins UCP2 and UCP3 by real-time PCR; and citrate synthase (CS) activity was determined spectrophotometrically in muscle homogenates. Compared to controls, there were no changes in proton leak and citrate synthase activity in the heart and m. soleus tissues of Wfs1-deficient mice, but significantly higher levels of both of these factors were observed in the m. rectus femoris; mitochondrial proteins and mRNA of UCP2 were also higher in the m. rectus femoris. ADP-stimulated state 3 respiration was lower in the m. soleus, remained unchanged in the heart, and was higher in the m. rectus femoris. The mitochondrial protein amount and activity are higher in Wfs1-deficient mice, as are mitochondrial proton leak and oxygen consumption in m. rectus femoris. These changes in muscle metabolism may be important for identifying the mechanisms responsible for Wolfram syndrome and diabetes.


Assuntos
Metabolismo Energético/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Quadríceps/metabolismo , Animais , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Metabolismo Energético/genética , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA