Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eadj3698, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091387

RESUMO

A Josephson junction (JJ) is a key device for developing superconducting circuits, wherein a supercurrent in the JJ is controlled by the phase difference between the two superconducting electrodes. When two JJs sharing one superconducting electrode are coherently coupled and form the Andreev molecules, a supercurrent of one JJ is expected to be nonlocally controlled by the phase difference of another JJ. Here, we evaluate the supercurrent in one of the coupled two JJs as a function of local and nonlocal phase differences. Consequently, the results exhibit that the nonlocal phase control generates a finite supercurrent even when the local phase difference is zero. In addition, an offset of the local phase difference giving the JJ ground state depends on the nonlocal phase difference. These features demonstrate the anomalous Josephson effect realized by the nonlocal phase control. Our results provide a useful concept for engineering superconducting devices such as phase batteries and dissipationless rectifiers.

2.
Nat Commun ; 14(1): 8271, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092786

RESUMO

The Josephson junction (JJ) is an essential element of superconducting (SC) devices for both fundamental and applied physics. The short-range coherent coupling of two adjacent JJs forms Andreev molecule states (AMSs), which provide a new ingredient to engineer exotic SC phenomena such as topological SC states and Andreev qubits. Here we provide tunneling spectroscopy measurements on a device consisting of two electrically controllable planar JJs sharing a single SC electrode. We discover that Andreev spectra in the coupled JJ are highly modulated from those in the single JJs and possess phase-dependent AMS features reproduced in our numerical calculation. Notably, the SC gap closing due to the AMS formation is experimentally observed. Our results help in understanding SC transport derived from the AMS and promoting the use of AMS physics to engineer topological SC states and quantum information devices.

3.
Nano Lett ; 23(10): 4564-4571, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37129463

RESUMO

The rotational response of quantum condensed fluids is strikingly distinct from rotating classical fluids, especially notable for the excitation and ordering of quantized vortex ensembles. Although widely studied in conservative systems, the dynamics of rotating open-dissipative superfluids such as exciton-polariton condensates remains largely unexplored, as it requires high-frequency rotation while avoiding resonantly driving the condensate. We create a rotating polariton condensate at gigahertz frequencies by off-resonantly pumping with a rotating optical stirrer composed of the time-dependent interference of two frequency-offset, structured laser modes. Acquisition of angular momentum exceeding the critical 1ℏ/particle is directly measured, accompanied by the deterministic nucleation and capture of quantized vortices with a handedness controlled by the pump rotation direction. The demonstration of controlled optical rotation of a spontaneously formed polariton condensate enables new opportunities for the study of open dissipative superfluidity, ordering of non-Hermitian quantized vortex matter, and topological states in a highly nonlinear, photonic platform.

5.
Phys Rev Lett ; 129(9): 095901, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083670

RESUMO

We report on experimental observations of charge-spin cooperative dynamics of two-electron states in a GaAs double quantum dot located in a nonequilibrium phonon environment. When the phonon energy exceeds the lowest excitation energy in the quantum dot, the spin-flip rate of a single electron strongly enhances. In addition, originated from the spatial gradient of phonon density between the dots, the parallel spin states become more probable than the antiparallel ones. These results indicate that spin is essential for further demonstrations of single-electron thermodynamic systems driven by phonons, which will greatly contribute to understanding of the fundamental physics of thermoelectric devices.

6.
Nat Commun ; 13(1): 5740, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180449

RESUMO

Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale integration along with their nanofabrication capability. However, linking distant silicon quantum processors is challenging as two-qubit gates in spin qubits typically utilize short-range exchange coupling, which is only effective between nearest-neighbor quantum dots. Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors. Coherent shuttling of a spin qubit enables efficient switching of the exchange coupling with an on/off ratio exceeding 1000, while preserving the spin coherence by 99.6% for the single shuttling between neighboring dots. With this shuttling-mode exchange control, we demonstrate a two-qubit controlled-phase gate with a fidelity of 93%, assessed via randomized benchmarking. Combination of our technique and a phase coherent shuttling of a qubit across a large quantum dot array will provide feasible path toward a quantum link between distant silicon quantum processors, a key requirement for large-scale quantum computation.

7.
Nature ; 608(7924): 682-686, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002485

RESUMO

Future large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation1,2. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers3-5. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems6-8. However, the demonstration of QEC, which requires three or more coupled qubits1, and involves a three-qubit gate9-11 or measurement-based feedback, remains an open challenge. Here we demonstrate a three-qubit phase-correcting code in silicon, in which an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors owing to one-qubit phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. These results show successful implementation of QEC and the potential of a silicon-based platform for large-scale quantum computing.

8.
Phys Rev Lett ; 128(20): 207001, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657870

RESUMO

The Josephson junction of a strong spin-orbit material under a magnetic field is a promising Majorana fermion candidate. Supercurrent enhancement by a magnetic field has been observed in the InAs nanowire Josephson junctions and assigned to a topological transition. In this work we observe a similar phenomenon but discuss the nontopological origin by considering the trapping of quasiparticles by vortices that penetrate the superconductor under a finite magnetic field. This assignment is supported by the observed hysteresis of the switching current when sweeping up and down the magnetic field. Our experiment shows the importance of quasiparticles in superconducting devices with a magnetic field, which can provide important insights for the design of qubits using superconductors.

9.
Nature ; 601(7893): 338-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046603

RESUMO

Fault-tolerant quantum computers that can solve hard problems rely on quantum error correction1. One of the most promising error correction codes is the surface code2, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent3. Among the many qubit platforms, only superconducting circuits4, trapped ions5 and nitrogen-vacancy centres in diamond6 have delivered this requirement. Electron spin qubits in silicon7-15 are particularly promising for a large-scale quantum computer owing to their nanofabrication capability, but the two-qubit gate fidelity has been limited to 98 per cent owing to the slow operation16. Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent, in silicon spin qubits by fast electrical control using a micromagnet-induced gradient field and a tunable two-qubit coupling. We identify the qubit rotation speed and coupling strength where we robustly achieve high-fidelity gates. We realize Deutsch-Jozsa and Grover search algorithms with high success rates using our universal gate set. Our results demonstrate universal gate fidelity beyond the fault-tolerance threshold and may enable scalable silicon quantum computers.

10.
Sci Rep ; 11(1): 19406, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593827

RESUMO

Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 × 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3 × 3 quantum dot array can execute four-qubit Grover's algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3 × 3, we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.

11.
Nat Nanotechnol ; 16(9): 965-969, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099899

RESUMO

Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing1. In large-scale quantum systems, the error accumulation requires concepts for quantum error correction. A first step toward error correction is the creation of genuinely multipartite entanglement, which has served as a performance benchmark for quantum computing platforms such as superconducting circuits2,3, trapped ions4 and nitrogen-vacancy centres in diamond5. Among the candidates for large-scale quantum computing devices, silicon-based spin qubits offer an outstanding nanofabrication capability for scaling-up. Recent studies demonstrated improved coherence times6-8, high-fidelity all-electrical control9-13, high-temperature operation14,15 and quantum entanglement of two spin qubits9,11,12. Here we generated a three-qubit Greenberger-Horne-Zeilinger state using a low-disorder, fully controllable array of three spin qubits in silicon. We performed quantum state tomography16 and obtained a state fidelity of 88.0%. The measurements witness a genuine Greenberger-Horne-Zeilinger class quantum entanglement that cannot be separated into any biseparable state. Our results showcase the potential of silicon-based spin qubit platforms for multiqubit quantum algorithms.

12.
Phys Rev Lett ; 126(1): 016801, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480769

RESUMO

The intrinsic Hall effect allows for the generation of a nondissipative charge neutral current, such as a pure spin current generated via the spin Hall effect. Breaking of the spatial inversion or time reversal symmetries, or the spin-orbit interaction is generally considered necessary for the generation of such a charge neutral current. Here, we challenge this general concept and present generation and detection of a charge neutral current in a centrosymmetric material with little spin-orbit interaction. We employ bilayer graphene, and find enhanced nonlocal transport in the quantum Hall antiferromagnetic state, where spontaneous symmetry breaking occurs due to the electronic correlation.

13.
Nature ; 579(7798): 210-213, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161385

RESUMO

When a magnetic impurity exists in a metal, conduction electrons form a spin cloud that screens the impurity spin. This basic phenomenon is called the Kondo effect1,2. Unlike electric-charge screening, the spin-screening cloud3-6 occurs quantum coherently, forming spin-singlet entanglement with the impurity. Although the spins interact locally around the impurity, the Kondo cloud can theoretically spread out over several micrometres. The cloud has not so far been detected, and so its physical existence-a fundamental aspect of the Kondo effect-remains controversial7,8. Here we present experimental evidence of a Kondo cloud extending over a length of micrometres, comparable to the theoretical length ξK. In our device, a Kondo impurity is formed in a quantum dot2,9-11, coupling on one side to a quasi-one-dimensional channel12 that houses a Fabry-Pérot interferometer of various gate-defined lengths L exceeding one micrometre. When we sweep a voltage on the interferometer end gate-separated by L from the quantum dot-to induce Fabry-Pérot oscillations in conductance we observe oscillations in the measured Kondo temperature TK, which is a signature of the Kondo cloud at distance L. When L is less than ξK the TK oscillation amplitude becomes larger as L becomes smaller, obeying a scaling function of a single parameter L/ξK, whereas when L is greater than ξK the oscillation is much weaker. Our results reveal that ξK is the only length parameter associated with the Kondo effect, and that the cloud lies mostly within a length of ξK. Our experimental method offers a way of detecting the spatial distribution of exotic non-Fermi liquids formed by multiple magnetic impurities or multiple screening channels13-16 and of studying spin-correlated systems.

14.
Nano Lett ; 20(2): 947-952, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944116

RESUMO

Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device parameters, and therefore, its performance in terms of measurement bandwidth and sensitivity is an important factor in spin qubit experiments. Here we demonstrate fast and sensitive charge sensing by radio frequency reflectometry of an undoped, accumulation-mode Si/SiGe double quantum dot. We show that the large parasitic capacitance in typical accumulation-mode gate geometries impedes reflectometry measurements. We present a gate geometry that significantly reduces the parasitic capacitance and enables fast single-shot readout. The technique allows us to distinguish between the singly- and doubly occupied two-electron states under the Pauli spin blockade condition in an integration time of 0.8 µs, the shortest value ever reported in silicon, by the signal-to-noise ratio of 6. These results provide a guideline for designing silicon spin qubit devices suitable for the fast and high-fidelity readout.

15.
Sci Adv ; 5(10): eaaw2194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620554

RESUMO

Cooper pair splitting (CPS) can induce nonlocal correlation between two normal conductors that are coupled to a superconductor. CPS in a double one-dimensional electron gas is an appropriate platform for extracting a large number of entangled electron pairs and is one of the key ingredients for engineering Majorana fermions with no magnetic field. In this study, we investigated CPS by using a Josephson junction of a gate-tunable ballistic InAs double nanowire. The measured switching current into the two nanowires is significantly larger than the sum of the switching current into the respective nanowires, indicating that interwire superconductivity is dominant compared with intrawire superconductivity. From its dependence on the number of propagating channels in the nanowires, the observed CPS is assigned to one-dimensional electron-electron interaction. Our results will pave the way for the utilization of one-dimensional electron-electron interaction to reveal the physics of high-efficiency CPS and to engineer Majorana fermions in double nanowire systems via CPS.

16.
Nat Commun ; 10(1): 2991, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311919

RESUMO

Gate-defined quantum dots (QDs) are such a highly-tunable quantum system in which single spins can be electrically coupled, manipulated, and measured. However, the spins in gate-defined QDs are lacking its interface to free-space photons. Here, we verify that a circularly-polarized single photon can excite a single electron spin via the transfer of angular momentum, measured using Pauli spin blockade (PSB) in a double QD. We monitor the inter-dot charge tunneling which only occur when the photo-electron spin in one QD is anti-parallel to the electron spin in the other. This allows us to detect single photo-electrons in the spin-up/down basis using PSB. The photon polarization dependence of the excited spin state was finally confirmed for the heavy-hole exciton excitation. The angular momentum transfer observed here is a fundamental step providing a route to instant injection of spins, distributing single spin information, and possibly towards extending quantum communication.

17.
Nat Nanotechnol ; 14(6): 555-560, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988474

RESUMO

Measurements of quantum systems inevitably involve disturbance in various forms. Within the limits imposed by quantum mechanics, there exists an ideal projective measurement that does not introduce a back action on the measured observable, known as a quantum non-demolition (QND) measurement1,2. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot. We entangle the single spin with a two-electron, singlet-triplet ancilla qubit via the exchange interaction3,4 and then read out the ancilla in a single shot. This procedure realizes a disturbance-free projective measurement of the single spin at a rate two orders of magnitude faster than its relaxation. The QND nature of the measurement protocol5,6 enables enhancement of the overall measurement fidelity by repeating the protocol. We demonstrate a monotonic increase of the fidelity over 100 repetitions against arbitrary input states. Our analysis based on statistical inference is tolerant to the presence of the relaxation and dephasing. We further exemplify the QND character of the measurement by observing spontaneous flips (quantum jumps)7 of a single electron spin. Combined with the high-fidelity control of spin qubits8-13, these results will allow for various measurement-based quantum state manipulations including quantum error correction protocols14.

18.
Nat Commun ; 9(1): 2133, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849025

RESUMO

Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. Here we show a scheme of entanglement engineering where pure dephasing assists the generation of quantum entanglement at distant sites in a chain of electron spins confined in semiconductor quantum dots. One party of an entangled spin pair, prepared at a single site, is transferred to the next site and then adiabatically swapped with a third spin using a transition across a multi-level avoided crossing. This process is accelerated by the noise-induced dephasing through a variant of the quantum Zeno effect, without sacrificing the coherence of the entangled state. Our finding brings insight into the spin dynamics in open quantum systems coupled to noisy environments, opening an avenue to quantum state manipulation utilizing decoherence effects.

19.
Sci Rep ; 8(1): 3454, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472574

RESUMO

The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

20.
Nat Nanotechnol ; 13(2): 102-106, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255292

RESUMO

The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility 1-4 , has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations 5-7 . Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations 8-10 . Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 µs) 11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise-rather than conventional magnetic noise-as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...