Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824900

RESUMO

Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like Xenopus epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates. We show that four mucociliary cell types each require different Notch levels and that their specification is initiated sequentially by a temporal Notch gradient. We describe a novel role for Foxi1 in the generation of Delta-expressing multipotent progenitors through Hes7.1. Hes7.1 is a weak repressor of mucociliary genes and overcomes maternal repression by the strong repressor Hes2 to initiate mucociliary development. Increasing Notch signaling then inhibits Hes7.1 and activates first Hes4, then Hes5.10, which selectively repress cell fates. We have uncovered a self-organizing mechanism of mucociliary cell type composition by competitive de-repression of cell fates by a set of differentially acting repressors. Furthermore, we present an in silico model of this process with predictive abilities.

2.
Dev Cell ; 56(4): 525-539.e6, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33400913

RESUMO

Multiciliated cells (MCCs) are extremely highly differentiated, presenting >100 cilia and basal bodies. Therefore, MCC fate is thought to be terminal and irreversible. We analyzed how MCCs are removed from the airway-like mucociliary Xenopus epidermis during developmental tissue remodeling. We found that a subset of MCCs undergoes lateral line-induced apoptosis, but that the majority coordinately trans-differentiate into goblet secretory cells. Both processes are dependent on Notch signaling, while the cellular response to Notch is modulated by Jak/STAT, thyroid hormone, and mTOR signaling. At the cellular level, trans-differentiation is executed through the loss of ciliary gene expression, including foxj1 and pcm1, altered proteostasis, cilia retraction, basal body elimination, as well as the initiation of mucus production and secretion. Our work describes two modes for MCC loss during vertebrate development, the signaling regulation of these processes, and demonstrates that even cells with extreme differentiation features can undergo direct fate conversion.


Assuntos
Apoptose , Linhagem da Célula , Cílios/metabolismo , Especificidade de Órgãos , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Autofagia , Corpos Basais/metabolismo , Corpos Basais/ultraestrutura , Transdiferenciação Celular , Cílios/ultraestrutura , Células Epidérmicas/metabolismo , Janus Quinases/metabolismo , Sistema da Linha Lateral/metabolismo , Fatores de Transcrição STAT/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
3.
Cell Rep ; 28(13): 3338-3352.e6, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553905

RESUMO

Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/ß-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/ß-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.


Assuntos
Epitélio/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/imunologia , beta Catenina/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
4.
Cells Tissues Organs ; 205(5-6): 279-292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300884

RESUMO

Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.


Assuntos
Epitélio/embriologia , Epitélio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Células Cultivadas , Epitélio/ultraestrutura , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Via de Sinalização Wnt , Xenopus/embriologia , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA