Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1412732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206189

RESUMO

Background: Antibody-mediated protection can depend on mechanisms varying from neutralization to Fc-dependent innate immune-cell recruitment. Adjuvanted vaccine development relies on a holistic understanding of how adjuvants modulate the quantity/titer and quality of the antibody response. Methods: A Phase 2 trial (ClinicalTrials.gov: NCT00805389) evaluated hepatitis B vaccines formulated with licensed adjuvants (AS01B, AS01E, AS03, AS04 or Alum) in antigen-naïve adults. The trial investigated the role of adjuvants in shaping antibody-effector functions, and identified an innate transcriptional response shared by AS01B, AS01E and AS03. We integrated previously reported data on the innate response (gene expression, cytokine/C-reactive protein levels) and on quantitative/qualitative features of the mature antibody response (Fc-related parameters, immunoglobulin titers, avidity). Associations between the innate and humoral parameters were explored using systems vaccinology and a machine-learning framework. Results: A dichotomy in responses between AS01/AS03 and AS04/Alum (with the former two contributing most to the association with the humoral response) was observed across all timepoints of this longitudinal study. The consistent patterns over time suggested a similarity in the impacts of the two-dose immunization regimen, year-long interval, and non-adjuvanted antigenic challenge given one year later. An innate signature characterized by interferon pathway-related gene expression and secreted interferon-γ-induced protein 10 and C-reactive protein, which was shared by AS01 and AS03, consistently predicted both the qualitative antibody response features and the titers. The signature also predicted from the antibody response quality, the group of adjuvants from which the administered vaccine was derived. Conclusion: An innate signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time.


Assuntos
Vacinas contra Hepatite B , Imunidade Inata , Humanos , Imunidade Inata/efeitos dos fármacos , Adulto , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Feminino , Adjuvantes de Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Masculino , Formação de Anticorpos/imunologia , Combinação de Medicamentos , Anticorpos Anti-Hepatite B/sangue , Anticorpos Anti-Hepatite B/imunologia , Esqualeno/administração & dosagem , Esqualeno/imunologia , Polissorbatos/administração & dosagem , Hepatite B/prevenção & controle , Hepatite B/imunologia , Imunogenicidade da Vacina , Lipídeo A/análogos & derivados , Saponinas , alfa-Tocoferol
2.
Plant Cell ; 29(11): 2766-2785, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29061868

RESUMO

In several organisms, particular functional categories of genes, such as regulatory and complex-forming genes, are preferentially retained after whole-genome multiplications but rarely duplicate through small-scale duplication, a pattern referred to as reciprocal retention. This peculiar duplication behavior is hypothesized to stem from constraints on the dosage balance between the genes concerned and their interaction context. However, the evidence for a relationship between reciprocal retention and dosage balance sensitivity remains fragmentary. Here, we identified which gene families are most strongly reciprocally retained in the angiosperm lineage and studied their functional and evolutionary characteristics. Reciprocally retained gene families exhibit stronger sequence divergence constraints and lower rates of functional and expression divergence than other gene families, suggesting that dosage balance sensitivity is a general characteristic of reciprocally retained genes. Gene families functioning in regulatory and signaling processes are much more strongly represented at the top of the reciprocal retention ranking than those functioning in multiprotein complexes, suggesting that regulatory imbalances may lead to stronger fitness effects than classical stoichiometric protein complex imbalances. Finally, reciprocally retained duplicates are often subject to dosage balance constraints for prolonged evolutionary times, which may have repercussions for the ease with which genome multiplications can engender evolutionary innovation.


Assuntos
Dosagem de Genes , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Magnoliopsida/genética , Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/classificação , Modelos Genéticos , Filogenia , Especificidade da Espécie
3.
Plant Cell ; 28(2): 326-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26744215

RESUMO

Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.


Assuntos
Dosagem de Genes , Duplicação Gênica , Genes Essenciais/genética , Genoma de Planta/genética , Genômica , Magnoliopsida/genética
4.
J Chem Inf Model ; 54(1): 159-68, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24289204

RESUMO

The identification of modules in protein structures has major relevance in structural biology, with consequences in protein stability and functional classification, adding new perspectives in drug design. In this work, we present the comparison between a topological (spectral clustering) and a geometrical (k-means) approach to module identification, in the frame of a multiscale analysis of the protein architecture principles. The global consistency of an adjacency matrix based technique (spectral clustering) and a method based on full rank geometrical information (k-means) give a proof-of-concept of the relevance of protein contact networks in structure determination. The peculiar "small-world" character of protein contact graphs is established as well, pointing to average shortest path as a mesoscopic crucial variable to maximize the efficiency of within-molecule signal transmission. The specific nature of protein architecture indicates topological approach as the most proper one to highlight protein functional domains, and two new representations linking sequence and topological role of aminoacids are demonstrated to be of use for protein structural analysis. Here we present a case study regarding azurin, a small copper protein implied in the Pseudomonas aeruginosa respiratory chain. Its pocket molecular shape and its electron transfer function have challenged the method, highlighting its potentiality to catch jointly the structure and function features of protein structures through their decomposition into modules.


Assuntos
Modelos Moleculares , Proteínas/química , Azurina/química , Azurina/metabolismo , Biologia Computacional , Simulação por Computador , Bases de Dados de Proteínas , Transporte de Elétrons , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA