Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 22(1): 281-293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887767

RESUMO

Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants' (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks.

2.
Water Res ; 162: 394-408, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299427

RESUMO

The performance of conventional drinking water treatment plants (WTPs) can be improved using quantitative microbial risk assessment (QMRA). A QMRA study on Cryptosporidium using actual pathogen density was conducted to examine the performance of Jalaliyeh WTP in Tehran, Iran. The infection risk and the burden of disease attributed to the parasite presence in finished water were estimated incorporating physical and chemical log reduction values (LRVs), using stochastic modeling and disinfection profiling. The risk and burden of disease were compared with health-based targets, i.e. one case of infection per 10,000 people or 10-6 DALYs per person per year. The parasite's LRVs were 2.31 and 0.034 log provided by physico-chemical treatment and disinfection processes, respectively. The mean of estimated risk (111 cases per 104 people per year) and the burden of disease (11.7 DALYs per 106 people per year) both exceeded the targets. To control the excess risk, three QMRA-based disinfection scenarios were examined including: (1) employing chlorine dioxide (ClO2) instead of chlorine (2) ozonation with a concentration of 0.75 mg/L (Ct = 22.5 min mg/L) and (3) UV irradiation with a dose of 10 mJ/cm2. The LRV of parasite may be increased to 3.0, 5.1 and 4.9 log by employing ClO2, ozonation and UV irradiation, respectively. The use of ozone or UV as alternative disinfectants, could enhance the disinfection efficacy and provide sufficient additional treatment against the excess risk of parasite. QMRA could make it easier applying appropriate improvement to conventional WTPs in order to increase the system performance in terms of health-based measures.


Assuntos
Cryptosporidium , Purificação da Água , Desinfecção , Irã (Geográfico) , Medição de Risco , Água
3.
Environ Sci Pollut Res Int ; 23(19): 19317-29, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27370533

RESUMO

The occurrences of Cryptosporidium and Giardia in surface sources of drinking water in Tehran were monitored, using US EPA method 1623.1. The prevalence ratios (PR) of positive samples among other media (animal's stools, vegetables, and human's stools) were also estimated from literature data. The density of Giardia and Cryptosporidium in water samples were 0.129 ± 0.069 cysts/L and 0.005 ± 0.002 oocysts/L, respectively. Estimated PR in vegetables, animal stools, surface waters, and human stools were 6.65, 20.42, 21.05, and 4.28 % for Cryptosporidium and 6.46, 17.13, 73.68, and 15.65 % for Giardia, respectively. These reveal the importance of surface waters' and animal stools' roles in the prevalence of cryptosporidiosis and giardiasis in Tehran's population. Giardia's prevalence in untreated surface waters in Tehran was found 3.5 times as much as Cryptosporidium while this found 2.3 times on a global scale. Moreover, the prevalence of giardiasis to cryptosporidiosis infections in Tehran's human population was 3.65. These values could be a clue to attribute the infections to the occurrence of parasites in surface waters. Significant (p < 0.05) associations were observed between rainfalls and presence of Giardia (r = 0.62) and Cryptosporidium (r = 0.60) in surface waters. In autumn, rainfalls can increase the parasites occurrences in surface waters. Significant (p < 0.05) difference on the density of parasites was found between some seasons using Kruskal-Wallis and multiple comparison tests. A significant correlation (r = 0.86) between Giardia and Cryptosporidium densities also confirms the common sources of pollution in surface waters. Findings suggest that untreated surface waters in Tehran may be a potential route of human exposure to protozoan parasites.


Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/crescimento & desenvolvimento , Água Doce/parasitologia , Giardia/crescimento & desenvolvimento , Giardíase/epidemiologia , Animais , Água Potável/parasitologia , Meio Ambiente , Monitoramento Ambiental , Fezes , Humanos , Irã (Geográfico)/epidemiologia , Oocistos , Prevalência , Microbiologia da Água , Purificação da Água/métodos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA