Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(17): 3870-3887, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093658

RESUMO

The microscopic aspects of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with formamide (FA), N-methylformamide (NMF), and N,N-dimethylformamide (DMF) were investigated using spectroscopic techniques of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), FT-IR, and NMR. Molecular dynamics simulations and quantum chemistry calculations were also performed. According to fs-RIKES, the first moment of the low-frequency spectrum bands mainly originating from the intermolecular vibrations in the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems changed gradually with the molecular liquid mole fraction XML but that in the [MOIm][BF4]/NMF system was constant up to XNMF = 0.7 and then gradually increased in the range of XNMF ≥ 0.7. Excluding the contribution of the 2D hydrogen-bonding network due to the presence of FA in the low-frequency spectrum band, the XML dependence of the normalized first moment of the low-frequency band in the [MOIm][BF4]/FA and [MOIm][BF4]/NMF systems revealed that the normalized first moment did not remarkably change in the range of XML < 0.7 but drastically increased in XML ≥ 0.7. FT-IR results indicated that the amide C═O band shifted to the low-frequency side with increasing XML for the three mixtures due to the hydrogen bonds. The imidazolium ring C-H band also showed a similar tendency to the amide C═O band. 19F NMR probed the microenvironment of [BF4]- in the mixtures. The [MOIm][BF4]/NMF and [MOIm][BF4]/DMF systems showed an up-field shift of the F atoms of the anion with increasing XML, and the [MOIm][BF4]/FA system exhibited a down-field shift. Steep changes in the chemical shifts were confirmed in the region of XML > 0.8. On the basis of the quantum chemistry calculations, the observed chemical shifts with increasing XML were mainly attributed to the many-body interactions of ions and amides for the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems. Meanwhile, the long distance between the cation and the anion was due to the high dielectric medium for the [MOIm][BF4]/NMF system, which led to an up-field shift.

2.
Phys Chem Chem Phys ; 24(22): 13698-13712, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612374

RESUMO

The upper critical solution temperature (UCST)-type liquid-liquid phase separation of imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation, n = 6, 8, 10, and 12) binary solutions with formamide (FA) was examined as a function of temperature and the FA mole fraction xFA. The two-phase region (immiscible region) of the solutions is much larger and expands more with the increase in n, in comparison with the previous [Cnmim][TFSI]-1,4-dioxane (1,4-DIO) systems. An array of spectroscopic techniques, including 1H and 13C NMR and IR combined with molecular dynamics (MD) simulations, was conducted on the present binary systems to clarify the microscopic interactions that contribute to the phase-separation mechanism. The hydrogen-bonding interactions of the imidazolium ring H atoms are more favorable with the O atoms of the FA molecules than with 1,4-DIO molecules, whereas the latter interact more favorably with the alkyl chain of the cation. Upon lowering the temperature, the FA molecules gradually self-aggregate through self-hydrogen bonding to form FA clusters. Concomitantly, clusters of ILs are formed via the electrostatic interaction between the counter ions and the dispersion force among the IL alkyl chains. Small-angle neutron scattering (SANS) experiments on the [C6mim][TFSI]-FA-d2 and [C8mim][TFSI]-FA-d2 systems revealed, similarly to [Cnmim][TFSI]-1,4-DIO systems, the crossover of the mechanism from the 3D-Ising mechanism around the UCST xFA to the mean-field mechanism at both sides of the mole fraction. Interestingly, the xFA range of the 3D-Ising mechanism for the FA systems is wider compared with the range of the 1,4-DIO systems. In this way, the self-hydrogen bonding among FA molecules most significantly governs the phase equilibria of the [Cnmim][TFSI]-FA systems.

3.
J Phys Chem B ; 125(51): 13896-13907, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34913705

RESUMO

The mixing states of two imidazolium-based ionic liquids (ILs) with different anions, 1-methyl-3-octylimidazolium tetrafluoroborate (C8mimBF4) and bis(trifluoromethylsulfonyl)amide (C8mimTFSA), with three molecular liquids (MLs), methanol (MeOH), acetonitrile (AN), and dimethyl sulfoxide (DMSO), have been investigated on both mesoscopic and microscopic scales using small-angle neutron scattering (SANS), infrared (IR), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, molecular dynamics (MD) simulations have been conducted on the six combinations of ILs and MLs to observe the states of their mixtures on the atomic level. The SANS profiles of the IL-ML mixtures suggested that MeOH molecules only form clusters in both C8mimBF4 and C8mimTFSA, whereas AN and DMSO were homogeneously mixed with ILs on the SANS scale. MeOH clusters are more enhanced in BF4--IL than TFSA--IL. The microscopic interactions among IL cations, anions, and MLs should contribute to the mesoscopic mixing states of the IL-ML mixtures. In fact, the IL cation-anion, cation-ML, anion-ML, and ML-ML interactions observed by IR, NMR, and MD simulations clarified the reasons for the mixing states of the IL-ML binary solutions observed by the SANS experiments. In neat ILs, the imidazolium ring of the IL cation more strongly interacts with BF4- than TFSA- due to the higher charge density of the former. The interaction of anions with the imidazolium ring is more easily loosened on adding MLs to ILs in the order of DMSO > MeOH > AN. It does not significantly depend on the anions. However, the replacement of the anion on the imidazolium ring by an ML depends on the anions; the replacement is more proceeded in the order of MeOH > DMSO > AN in BF4--IL, while DMSO > MeOH > AN in TFSA--IL. On the other hand, the solvation of both anions by MLs is stronger in the order of MeOH > DMSO ≈ AN. Despite the stronger interactions of MeOH with both cations and anions, MeOH molecules are heterogeneously mixed with both ILs to form clusters in the mixtures. Therefore, the self-hydrogen bonding among MeOH molecules most markedly governs the mixing state of the binary solutions among the abovementioned interactions.


Assuntos
Dimetil Sulfóxido , Metanol , Acetonitrilas , Amidas , Ânions , Imidazóis
4.
J Phys Chem B ; 124(36): 7857-7871, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790364

RESUMO

In this study, we examined the low-frequency spectra of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with methanol (MeOH), acetonitrile (MeCN), and dimethyl sulfoxide (DMSO), which were obtained by femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and molecular dynamics (MD) simulations. In addition, we estimated the liquid properties of the mixtures, such as density ρ, surface tension γ, viscosity η, and electrical conductivity σ. The line shapes of the low-frequency Kerr spectra of the three [MOIm][BF4] mixture systems strongly depend on the mole fraction of the molecular liquid, XML. The spectral intensity increases with increasing XML of the [MOIm][BF4]/MeCN system but decreases for the [MOIm][BF4]/MeOH and [MOIm][BF4]/DMSO systems. These behaviors of the spectral intensities reasonably agree with the vibrational density-of-states spectra when the polarizability anisotropies of MeOH, MeCN, DMSO, and ion species are considered. The characteristic frequencies (first moments, M1) of the low-frequency spectra of the three mixture systems are almost insensitive at XML = 0-0.6. However, the frequencies vary mildly at XML = 0.6-0.9 and dramatically at XML = 0.9-1. The XML-dependent M1 in the Kerr spectra are well reproduced by the MD simulations. Plots of M1 versus bulk parameter, (γ/ρ)1/2, for the three mixture systems show that the mixtures at XML = 0-0.6 behave like aromatic cation-based ionic liquids (ILs), those at XML = 0.9-1 are molecular liquids (MLs), and those at XML = 0.6-0.9 are transitioning between aromatic cation-based ILs and MLs. MD simulations show that the solvent molecules localized at the interface between the ionic and the alkyl group regions without forming large solvent networks at XML = 0-0.6. However, solvent networks or regions develop largely at XML = 0.6-0.9 and the constituent ions of the IL disperse in the MLs at XML = 0.9-1. The MD simulations corroborate the results obtained by fs-RIKES.

5.
Phys Chem Chem Phys ; 21(6): 3154-3163, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675887

RESUMO

In the room-temperature ionic liquid (IL) of 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([C8mim][TFSA]), the complex formation of Ni2+ with molecular liquids (MLs), dimethyl sulfoxide (DMSO), methanol (MeOH), and acetonitrile (AN), has been examined using ultraviolet (UV)-visible spectroscopy. The overall stability constants log ßn, enthalpies , and entropies of the equilibria have been determined to elucidate the mechanism of complex formation. From a comparison of such thermodynamic parameters of the present [C8mim][TFSA] systems with those of the previous systems of 1-ethyl-3-methylimidazolium-based IL, [C2mim][TFSA], the effects of the octyl chain of the imidazolium cation, [C8mim]+, on the complex formation of Ni2+ with MLs have been demonstrated. In [C8mim][TFSA]-ML systems, more stable complexes are formed with MLs in the sequence of AN > DMSO ≫ MeOH. This sequence differs from that of DMSO ≫ AN > MeOH in [C2mim][TFSA]. For the AN systems, the stabilities of [Ni(an)n] in [C8mim][TFSA] are higher as compared to those in [C2mim][TFSA]. In contrast, for the DMSO systems, [Ni(dmso)n] is less stable in the IL with the longer alkyl chain than that in the IL with the shorter chain. The dependence of the alkyl chain length on the stabilities of [Ni(meoh)n] is the least significant among the three MLs. These varieties of the stabilities of Ni2+ complexes with the MLs have been interpreted from the thermodynamic parameters, together with the static interactions in the [C8mim][TFSA]-ML and [C2mim][TFSA]-ML solvents observed by means of 1H and 13C NMR, small-angle neutron scattering (SANS), and infrared (IR) with an ATR diamond prism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA