Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 111: 104563, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260711

RESUMO

Micro- and nanoplastics (MPs/NPs) constitute emerging and widely-distributed environmental contaminants to which humans are highly exposed. They possibly represent a threat for human health. In order to identify cellular/molecular targets for these plastic particles, we have analysed the effects of exposure to manufactured polystyrene (PS) MPs and NPs on in vitro activity and expression of human membrane drug transporters, known to interact with chemical pollutants. PS MPs and NPs, used at various concentrations (1, 10 or 100 µg/mL), failed to inhibit efflux activities of the ATP-binding cassette (ABC) transporters P-glycoprotein, MRPs and BCRP in ABC transporter-expressing cells. Furthermore, PS particles did not impair the transport of P-glycoprotein or BCRP substrates across intestinal Caco-2 cell monolayers. Uptake activities of solute carriers (SLCs) such as OCT1 and OCT2 (handling organic cations) or OATP1B1, OATP1B3, OATP2B1, OAT1 and OAT3 (handling organic anions) were additionally not altered by PS MPs/NPs in HEK-293 cells overexpressing these SLCs. mRNA expression of ABC transporters and of the SLCs OCT1 and OATP2B1 in Caco-2 cells and human hepatic HepaRG cells were finally not impaired by a 48-h exposure to MPs/NPs. Altogether, these data indicate that human drug transporters are unlikely to be direct and univocal targets for synthetic PS MPs/NPs.

2.
Chemosphere ; 358: 142122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663675

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.


Assuntos
Succinato Desidrogenase , Humanos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Inibidores Enzimáticos/farmacologia , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores
3.
Ecotoxicol Environ Saf ; 263: 115348, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597291

RESUMO

Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Tritolil Fosfatos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Retardadores de Chama/toxicidade , Proteínas de Neoplasias , Proteínas de Membrana Transportadoras/genética , Poluentes Ambientais/toxicidade
4.
Environ Pollut ; 331(Pt 2): 121882, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236587

RESUMO

Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.


Assuntos
Poluentes Ambientais , Plásticos , Humanos , Plásticos/toxicidade , Plásticos/metabolismo , Toxicocinética , Plastificantes/toxicidade , Proteínas de Membrana Transportadoras , Poluentes Ambientais/toxicidade , Interações Medicamentosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA